Nonlinear Dynamics

, Volume 73, Issue 3, pp 1433–1441

A mixing propagation model of computer viruses and countermeasures

  • Qingyi Zhu
  • Xiaofan Yang
  • Lu-Xing Yang
  • Xulong Zhang
Original Paper

Abstract

Based on the CMC antivirus strategy proposed by Chen and Carley, a mixing propagation model of computer viruses and countermeasures is suggested. This model has two potential virus-free equilibria and two potential endemic equilibria. The existence and global stability of these equilibria are fully investigated. From the obtained results it can be deduced that the CMC strategy is efficacious in deracinating viruses.

Keywords

Computer virus Countermeasure Epidemic model Equilibrium Global asymptotic stability 

References

  1. 1.
    Szor, P.: The Art of Computer Virus Research and Defense. Addison-Wesley, Reading (2005) Google Scholar
  2. 2.
    Cohen, F.: Computer viruses: theory and experiments. Comput. Secur. 6(1), 22–35 (1987) CrossRefGoogle Scholar
  3. 3.
    Murray, W.H.: The application of epidemiology to computer viruses. Comput. Secur. 7(2), 130–150 (1988) CrossRefGoogle Scholar
  4. 4.
    Kephart, J.O., White, S.R.: Directed-graph epidemiological models of computer viruses. In: Proceedings of 1991 IEEE Symposium Security and Privacy, pp. 343–359 (1991) CrossRefGoogle Scholar
  5. 5.
    Kephart, J.O., White, S.R.: Measuring and modeling computer virus prevalence. In: Proceedings of 1993 IEEE Symposium on Security and Privacy, pp. 2–15 (1987) Google Scholar
  6. 6.
    Billings, L., Spears, W.M., Schwartz, I.B.: A unified prediction of computer virus spread in connected networks. Phys. Lett. A 297(3–4), 261–266 (2002) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Mishra, B.K., Jha, N.: Fixed period of temporary immunity after run of anti-malicious software on computer nodes. Appl. Math. Comput. 190(2), 1207–1212 (2007) MATHCrossRefGoogle Scholar
  8. 8.
    Mishra, B.K., Saini, D.K.: SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl. Math. Comput. 188(2), 1476–1482 (2007) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Yuan, H., Chen, G.: Network virus-epidemic model with the point-to-group information propagation. Appl. Math. Comput. 206(1), 357–367 (2008) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Yuan, H., Chen, G., Wu, J., Xiong, H.: Towards controlling virus propagation in information systems with point-to-group information sharing. Decis. Support Syst. 48(1), 57–68 (2009) CrossRefGoogle Scholar
  11. 11.
    Piqueira, J.R.C., de Vasconcelos, A.A., Gabriel, C.E.C.J., Araujo, V.O.: Dynamic models for computer viruses. Comput. Secur. 27(7–8), 355–359 (2008) CrossRefGoogle Scholar
  12. 12.
    Piqueira, J.R.C., Araujo, V.O.: A modified epidemiological model for computer viruses. Appl. Math. Comput. 213(2), 355–360 (2009) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Han, X., Tan, Q.: Dynamical behavior of computer virus on Internet. Appl. Math. Comput. 217(6), 2520–2526 (2010) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Mishra, B.K., Saini, D.K.: SEIQRS model for the transmission of malicious objects in computer network. Appl. Math. Model. 34(3), 710–715 (2010) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Mishra, B.K., Pandey, S.K.: Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 217(21), 8438–8446 (2011) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Toutonji, O.A., Yoo, S.-M., Park, M.: Stability analysis of VEISV propagation modeling for network worm attack. Appl. Math. Model. 36(6), 2751–2761 (2012) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Feng, L., Liao, X., Li, H., Han, Q.: Hopf bifurcation analysis of a delayed viral infection model in computer networks. Math. Comput. Model. 56(7–8), 167–179 (2012) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Dong, T., Liao, X., Li, H.: Stability and Hopf bifurcation in a computer virus model with multistate antivirus. Abstr. Appl. Anal. 2012, 841987 (2012) MathSciNetMATHGoogle Scholar
  19. 19.
    Ren, J., Yang, X., Yang, L.-X., Xu, Y., Yang, F.: A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45(1), 74–79 (2012) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ren, J., Yang, X., Zhu, Q., Yang, L.X., Zhang, C.: A novel computer virus model and its dynamics. Nonlinear Anal.: Real World Appl. 13(1), 376–384 (2012) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Ren, J., Xu, Y., Zhang, Y., Dong, Y., Hao, G.: Dynamics of a delay-varying computer virus propagation model. Discrete Dyn. Nat. Soc. 2012, 371792 (2012) MathSciNetGoogle Scholar
  22. 22.
    Yang, M., Zhang, Z., Li, Q., Zhang, G.: An SLBRS model with vertical transmission of computer virus over the Internet. Discrete Dyn. Nat. Soc. 2012, 925648 (2012) MathSciNetGoogle Scholar
  23. 23.
    Zhu, Q., Yang, X., Yang, L.-X., Zhang, C.: Optimal control of computer virus under a delayed model. Appl. Math. Comput. 218(23), 11613–11619 (2012) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhu, Q., Yang, X., Ren, J.: Modeling and analysis of the spread of computer virus. Commun. Nonlinear Sci. Numer. Simul. 17(12), 5117–5124 (2012) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Zhang, C., Zhao, Y., Wu, Y.: An impulse model for computer viruses. Discrete Dyn. Nat. Soc. 2012, 260962 (2012) MathSciNetGoogle Scholar
  26. 26.
    Gan, C., Yang, X., Liu, W., Zhu, Q., Zhang, X.: Propagation of computer virus under human intervention: a dynamical model. Discrete Dyn. Nat. Soc. 2012, 106950 (2012) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yang, L.-X., Yang, X., Wen, L., Liu, J.: Propagation behavior of virus codes in the situation that infected computers are connected to the Internet with positive probability. Discrete Dyn. Nat. Soc. 2012, 693695 (2012) Google Scholar
  28. 28.
    Yang, L.-X., Yang, X., Wen, L., Liu, J.: A novel computer virus propagation model and its dynamics. Int. J. Comput. Math. 89(17), 2307–2314 (2012) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Yang, L.-X., Yang, X., Zhu, Q., Wen, L.: A computer virus model with graded cure rates. Nonlinear Anal., Real World Appl. 4(1), 414–422 (2012) MathSciNetMATHGoogle Scholar
  30. 30.
    Dezsö, Z., Barabási, A.-L.: Halting viruses in scale-free networks. Phys. Rev. E 65(5), 055103 (2002) CrossRefGoogle Scholar
  31. 31.
    Chen, L.C., Carley, K.M.: The impact of countermeasure propagation on the prevalence of computer viruses. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(2), 823–833 (2004) CrossRefGoogle Scholar
  32. 32.
    Markus, L.: Asymptotically autonomous differential systems. In: Lefschetz, S. (ed.) Contributions to the Theory of Nonlinear Oscillations III. Annals of Mathematics Studies, vol. 36, pp. 17–29. Princeton University Press, Princeton (1956) Google Scholar
  33. 33.
    Robinson, R.C.: An Introduction to Dynamical System: Continuous and Discrete. Prentice Hall, New York (2004) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Qingyi Zhu
    • 1
    • 2
  • Xiaofan Yang
    • 1
    • 2
  • Lu-Xing Yang
    • 1
    • 2
  • Xulong Zhang
    • 1
    • 2
  1. 1.School of Electronic and Information EngineeringSouthwest UniversityChongqingChina
  2. 2.College of Computer ScienceChongqing UniversityChongqingChina

Personalised recommendations