Advertisement

Nonlinear Dynamics

, Volume 73, Issue 1–2, pp 679–688 | Cite as

A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems

  • Mohammad Pourmahmood Aghababa
Original Paper

Abstract

This paper introduces a finite-time control technique for control of a class of non-autonomous fractional-order nonlinear systems in the presence of system uncertainties and external noises. It is known that finite-time control methods demonstrate better robustness and disturbance rejection properties. Moreover, finite time control methods have optimal settling time. In order to design a robust finite-time controller, a new nonsingular terminal sliding manifold is proposed. The proposed sliding mode dynamics has the property of fast convergence to zero. Afterwards, a novel fractional sliding mode control law is introduced to guarantee the occurrence of the sliding motion in finite time. The convergence times of both reaching and sliding phases are estimated. The main characteristics of the proposed fractional sliding mode technique are (1) finite-time convergence to the origin; (2) the use of only one control input; (3) robustness against system uncertainties and external noises; and (4) the ability of control of non-autonomous fractional-order systems. At the end of this paper, some computer simulations are included to highlight the applicability and efficacy of the proposed fractional control method.

Keywords

Nonsingular terminal sliding mode Finite-time control Lyapunov theorem Fractional calculus 

References

  1. 1.
    Luo, Y., Chen, Y.Q., Pi, Y.: Experimental study of fractional order proportional derivative controller synthesis for fractional order systems. Mechatronics 21, 204–214 (2011) CrossRefGoogle Scholar
  2. 2.
    Aghababa, M.P.: Chaos in a fractional-order micro-electro-mechanical resonator and its suppression. Chin. Phys. B 21, 100505 (2012) CrossRefGoogle Scholar
  3. 3.
    Aghababa, M.P., Aghababa, H.P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dyn. 69, 1903–1914 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Aghababa, M.P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35, 3080–3091 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Aghababa, M.P., Heydari, A.: Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities. Appl. Math. Model. 36, 1639–1652 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Aghababa, M.P., Akbari, M.E.: A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances. Appl. Comput. Math. 218, 5757–5768 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Aghababa, M.P., Feizi, H.: Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs. Chin. Phys. B 21, 060506 (2012) CrossRefGoogle Scholar
  8. 8.
    Aghababa, M.P., Aghababa, H.P.: Chaos suppression of a class of unknown uncertain chaotic systems via single input. Commun. Nonlinear Sci. Numer. Simul. 17, 3533–3538 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Aghababa, M.P., Feizi, H.: Design of a sliding mode controller for synchronizing chaotic systems with parameter and model uncertainties and external disturbances. Trans. Inst. Meas. Control (2012). doi: 10.1177/0142331211434657 Google Scholar
  10. 10.
    Aghababa, M.P., Aghababa, H.P.: A novel finite-time sliding mode controller applied to synchronize chaotic systems with input nonlinearity. Arab. J. Sci. Eng. 34, 990–997 (2012) Google Scholar
  11. 11.
    Aghababa, M.P.: A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs. Chin. Phys. B 20, 090505 (2011) CrossRefGoogle Scholar
  12. 12.
    Aghababa, M.P., Aghabab, H.P.: Synchronization of mechanical horizontal platform systems in finite time. Appl. Math. Model. 36, 4579–4591 (2012) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Aghababa, M.P.: Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems. Chin. Phys. B 21, 030502 (2012) CrossRefGoogle Scholar
  14. 14.
    Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs. Appl. Math. Mech. 33, 155–164 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Aghababa, M.P., Aghababa, H.P.: Chaos suppression of uncertain gyros in a given finite time. Chin. Phys. B 21, 110505 (2012) CrossRefGoogle Scholar
  16. 16.
    Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of non-autonomous uncertain chaotic centrifugal flywheel governor systems with input nonlinearities. J. Vib. Control (2012). doi: 10.1177/1077546312463715 Google Scholar
  17. 17.
    Aghababa, M.P., Aghababa, H.P.: Adaptive finite-time synchronization of non-autonomous chaotic systems with uncertainty. J. Comput. Nonlinear Dyn. 8, 031006 (2013) CrossRefGoogle Scholar
  18. 18.
    Aghababa, M.P., Aghababa, H.P.: Chaos suppression of rotational machine systems via finite-time control method. Nonlinear Dyn. 69, 1881–1888 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of a non-autonomous chaotic rotating mechanical system. J. Franklin Inst. 349, 2875–2888 (2012) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Aghababa, M.P., Aghababa, H.P.: Synchronization of nonlinear chaotic electromechanical gyrostat systems with uncertainties. Nonlinear Dyn. 67, 2689–2701 (2012) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hamamci, S.E.: Stabilization using fractional-order PI and PID controllers. Nonlinear Dyn. 51, 329–343 (2008) zbMATHCrossRefGoogle Scholar
  22. 22.
    Lu, J.G.: Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal. Physica A 359, 107–118 (2006) CrossRefGoogle Scholar
  23. 23.
    Aghababa, M.P.: Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory. J. Comput. Nonlinear Dyn. 7, 021010 (2012) CrossRefGoogle Scholar
  24. 24.
    Aghababa, M.P.: Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 17, 2670–2681 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order chaotic (hyperchaotic) systems via fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69, 247–261 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) zbMATHGoogle Scholar
  27. 27.
    Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Appl. Math. 59, 1810–1821 (2010) MathSciNetzbMATHGoogle Scholar
  28. 28.
    Utkin, V.I.: Sliding Modes in Control Optimization. Springer, Berlin (1992) zbMATHCrossRefGoogle Scholar
  29. 29.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentUrmia University of TechnologyUrmiaIran

Personalised recommendations