Nonlinear Dynamics

, Volume 73, Issue 1–2, pp 649–663 | Cite as

A generalized frequency detuning method for multidegree-of-freedom oscillators with nonlinear stiffness

  • S. A. Neild
  • D. J. Wagg
Original Paper


In this paper, we derive a frequency detuning method for multi-degree-of-freedom oscillators with nonlinear stiffness. This approach includes a matrix of detuning parameters, which are used to model the amplitude dependent variation in resonant frequencies for the system. As a result, we compare three different approximations for modeling the affect of the nonlinear stiffness on the linearized frequency of the system. In each case, the response of the primary resonances can be captured with the same level of accuracy. However, harmonic and subharmonic responses away from the primary response are captured with significant differences in accuracy. The detuning analysis is carried out using a normal form technique, and the analytical results are compared with numerical simulations of the response. Two examples are considered, the second of which is a two degree-of-freedom oscillator with cubic stiffnesses.


Nonlinear vibration Second-order normal form method Response harmonics 


  1. 1.
    McIntyre, M.E., Schumacher, R.T., Woodhouse, J.: On the oscillations of musical instruments. Journal of the Acoustical Society of America 74(5), 1325–1345 (1983) CrossRefGoogle Scholar
  2. 2.
    Thompson, J.M.T., Elvey, J.S.N.: Elimination of subharmonic resonances of compliant marine structures. International Journal of Mechanical Sciences 26, 419–425 (1984) CrossRefGoogle Scholar
  3. 3.
    Cartmell, M.: Introduction to Linear, Parametric and Nonlinear Vibrations. Chapman and Hall, London (1990) zbMATHGoogle Scholar
  4. 4.
    Schwartz, I.B., Erneux, T.: Subharmonic hysteresis and period-doubling bifurcations for a periodically driven laser. SIAM Journal on Applied Mathematics 54(4), 1083–1100 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bishop, S.R., Xu, D.: Use of control to eliminate subharmonic and chaotic impacting motions of a driven beam. Journal of Sound and Vibration 205(2), 223–234 (1997) CrossRefGoogle Scholar
  6. 6.
    Tondl, A., Ruijgrok, T., Verhulst, F., Nabergoj, R.: Autoparametric Resonance in Mechanical Systems. Cambridge, Cambridge (2000) zbMATHGoogle Scholar
  7. 7.
    Zhou, Q., Larsen, J.W., Nielsen, S.R.K., Qu, W.L.: Nonlinear stochastic analysis of subharmonic response of a shallow cable. Nonlinear Dynamics 48(1–2), 97–114 (2007) zbMATHCrossRefGoogle Scholar
  8. 8.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995) CrossRefGoogle Scholar
  9. 9.
    Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations an Introduction to Dynamical Systems, 3rd edn. Oxford University Press, London (1999) zbMATHGoogle Scholar
  10. 10.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Books Group, Cambridge (2001) Google Scholar
  11. 11.
    Szemplińska, W.: Behaviour on Nonlinear Vibrating Systems, Vol. II. Advanced Concepts and Applications to Multi-Degree-of-Freedom Systems. Kluwer, Dordrecht (1990) Google Scholar
  12. 12.
    Kahn, P.B., Zarmi, Y.: Nonlinear dynamics: a tutorial on the method of normal forms. American Journal of Physics 68(10), 907–919 (2000) CrossRefGoogle Scholar
  13. 13.
    Stolovitch, L.: Progress in normal form theory. Nonlinearity 22, R77–R99 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Murdock, J.: Normal Forms and Unfoldings for Local Dynamical Systems. Springer, Berlin (2002) Google Scholar
  15. 15.
    Touzé, C., Thomas, O., Huberdeau, A.: Asymptotic non-linear normal modes for large-amplitude vibrations of continuous structures. Computers and Structures 82, 2671–2682 (2004) CrossRefGoogle Scholar
  16. 16.
    Wang, F., Bajaj, A.K.: On the formal equivalence of normal form theory and the method of multiple time scales. Journal of Computational and Nonlinear Dynamics 4, article 021005 (2009) CrossRefGoogle Scholar
  17. 17.
    Lamarque, C.-H., Touzé, T., Thomas, O.: An upper bound for validity limits of asymptotic analytical approaches based on normal form theory. Nonlinear Dynamics 70, 1931–1949 (2012) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Neild, S.A., Wagg, D.J.: Applying the method of normal forms to second-order nonlinear vibration problems. Proc. R. Soc. A, Math. Phys. Eng. Sci. 467, 1141–1163 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Neild, S.A.: Approximate methods for analysing nonlinear structures. In: Wagg, D.J., Virgin, L.N. (eds.) Exploiting Nonlinear Behavior in Structural Dynamics. Springer, Berlin (2012) Google Scholar
  20. 20.
    Nayfeh, A.H.: Method of Normal Forms. Wiley, New York (1993) zbMATHGoogle Scholar
  21. 21.
    Xin, Z., Zuo, Z., Feng, H., Wagg, D., Neild, S.: Higher order accuracy analysis of the second order normal form method. Nonlinear Dynamics 70, 2175–2185 (2012) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Davis, H.T.: Introduction to Nonlinear Differential and Integral Equations. Dover, New York (1962) zbMATHGoogle Scholar
  23. 23.
    Xin, Z.F., Neild, S.A., Wagg, D.J.: The selection of the linearized natural frequency for the second-order normal form method. In: Proceedings of IDETC/CIE ASME International Design Engineering Technical Conferences, Washington, DC, USA (2011). Paper DETC2011-47654 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of BristolBristolUK

Personalised recommendations