Nonlinear Dynamics

, Volume 73, Issue 1–2, pp 583–592 | Cite as

Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle

Original Paper

Abstract

This paper develops a multistage least squares based iterative algorithm to estimate the parameters of feedback nonlinear systems with moving average noise from input–output data. Since that the identification model is bilinear on the unknown parameter space, the solution is to decompose a system into several subsystems with each of which is linear about its parameter vector, then to replace the unknown noise terms in the information vectors with their corresponding estimates at the previous iteration of each subsystem, and estimate each subsystem, respectively. The simulation results show that the proposed algorithm can work well.

Keywords

Parameter estimation Iterative identification Least squares algorithm Hierarchical identification principle Nonlinear system Feedback system 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61273194, 61203111), the Natural Science Foundation of Jiangsu Province (China, BK2012549) and the 111 Project (B12018).

References

  1. 1.
    Zhang, Y.: Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods. Math. Comput. Model. 53(9–10), 1810–1819 (2011) MATHCrossRefGoogle Scholar
  2. 2.
    Shi, Y., Deng, X.Y., Huang, H.S.: Identification and functional characterization of two orphan g-protein-coupled receptors for adipokinetic hormones from silkworm bombyx mori. J. Biol. Chem. 286(49), 42390–42402 (2011) CrossRefGoogle Scholar
  3. 3.
    Shi, Y., Ding, F., Chen, T.: Multirate crosstalk identification in xDSL systems. IEEE Trans. Commun. 54(10), 1878–1886 (2006) CrossRefGoogle Scholar
  4. 4.
    Ding, F., Liu, Y.J., Bao, B.: Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 226(1), 43–55 (2012) CrossRefGoogle Scholar
  5. 5.
    Wang, D.Q., Ding, F.: Extended stochastic gradient identification algorithms for Hammerstein–Wiener ARMAX systems. Comput. Math. Appl. 56(12), 3157–3164 (2008) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Vörös, J.: Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities. Syst. Control Lett. 56(2), 99–105 (2007) MATHCrossRefGoogle Scholar
  7. 7.
    Ding, F., Shi, Y., Chen, T.: TAuxiliary model based least-squares identification methods for Hammerstein output-error systems. Syst. Control Lett. 56(5), 373–380 (2007) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ho, W.H., Chou, J.H., Guo, C.Y.: Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn. 61(1–2), 29–41 (2010) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Wang, W., Li, J.H., Ding, R.F.: Maximum likelihood parameter estimation algorithm for controlled autoregressive models. Int. J. Comput. Math. 88(16), 3458–3467 (2011) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Wang, W., Ding, F., Dai, J.Y.: Maximum likelihood least squares identification for systems with autoregressive moving average noise. Appl. Math. Model. 36(5), 1842–1853 (2012) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Li, J.H., Ding, F., Yang, G.W.: Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems. Math. Comput. Model. 55(3–4), 442–450 (2012) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ding, F.: Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling. Appl. Math. Model. 37(4), 1694–1704 (2013) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, D.Q., Chu, Y.Y., et al.: Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems. Comput. Math. Appl. 59(9), 3092–3098 (2010) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Wang, D.Q., Chu, Y.Y., et al.: Auxiliary model-based recursive generalized least squares parameter estimation for Hammerstein OEAR systems. Math. Comput. Model. 52(1–2), 309–317 (2010) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Umoh, I.J., Ogunfunmi, T.: An affine projection-based algorithm for identification of nonlinear Hammerstein systems. Signal Process. 90(6), 2020–2030 (2010) MATHCrossRefGoogle Scholar
  16. 16.
    Ding, F., Liu, X.P., Liu, G.: Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011) CrossRefGoogle Scholar
  17. 17.
    Narayanan, M.D., Narayanan, S., Padmanabhan, C.: Parametric identification of nonlinear systems using multiple trials. Nonlinear Dyn. 48(4), 341–360 (2007) MATHCrossRefGoogle Scholar
  18. 18.
    Silva, W.: Identification of nonlinear aeroelastic systems based on the Volterra theory: progress and opportunities. Nonlinear Dyn. 39(1–2), 25–62 (2005) MATHCrossRefGoogle Scholar
  19. 19.
    Wang, D.Q., Ding, F.: Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process. 91(5), 1182–1189 (2011) MATHCrossRefGoogle Scholar
  20. 20.
    Fan, D., Lo, K.: Identification for disturbed MIMO Wiener systems. Nonlinear Dyn. 55(1–2), 31–42 (2009) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Ding, F., Shi, Y., Chen, T.: Gradient-based identification methods for Hammerstein nonlinear ARMAX models. Nonlinear Dyn. 45(1–2), 31–43 (2006) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Dehghan, M., Hajarian, M.: SSHI methods for solving general linear matrix equations. Eng. Comput. 28(8), 1028–1043 (2011) CrossRefGoogle Scholar
  23. 23.
    Dehghan, M., Hajarian, M.: Fourth-order variants of Newton’s method without second derivatives for solving non-linear equations. Eng. Comput. 29(4), 356–365 (2012) CrossRefGoogle Scholar
  24. 24.
    Dehghan, M., Hajarian, M.: Iterative algorithms for the generalized centro-symmetric and central anti-symmetric solutions of general coupled matrix equations. Eng. Comput. 29(5), 528–560 (2012) CrossRefGoogle Scholar
  25. 25.
    Liu, X.G., Lu, J.: Least squares based iterative identification for a class of multirate systems. Automatica 46(3), 549–554 (2012) CrossRefGoogle Scholar
  26. 26.
    Zhang, Z.N., Jia, J., Ding, R.F.: Hierarchical least squares based iterative estimation algorithm for multivariable Box–Jenkins-like systems using the auxiliary model. Appl. Math. Comput. 218(9), 5580–5587 (2012) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Bao, B., Xu, Y.Q., Sheng, J., Ding, R.F.: Least squares based iterative parameter estimation algorithm for multivariable controlled ARMA system modelling with finite measurement data. Math. Comput. Model. 53(9–10), 1664–1669 (2011) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Ding, F., Chen, T.: Identification of Hammerstein nonlinear ARMAX systems. Automatica 41(9), 1479–1489 (2005) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Duan, H.H., Ding, R.: TS-RLS algorithm for pseudo-linear regressive models. Math. Comput. Model. 55(3–4), 1151–1159 (2012) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Yao, G.Y., Ding, R.F.: Two-stage least squares based iterative identification algorithm for controlled autoregressive moving average (CARMA) systems. Comput. Math. Appl. 63(5), 975–984 (2012) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Cerone, V., Regruto, D.: Parameter bounds for discrete-time Hammerstein models with bounded output errors. IEEE Trans. Autom. Control 48(10), 1855–1860 (2003) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yu, L., Zhang, J.B., Liao, Y.W., Ding, J.: Parameter estimation error bounds for Hammerstein finite impulsive response models. Appl. Math. Comput. 202(2), 472–480 (2008) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Liu, Y., Bai, E.W.: Iterative identification of Hammerstein systems. Automatica 43(2), 346–354 (2007) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Ding, F., Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica 41(2), 315–325 (2005) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Ding, F., Chen, T.: Hierarchical least squares identification methods for multivariable systems. IEEE Trans. Autom. Control 50(3), 397–402 (2005) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ding, F., Chen, T.: Hierarchical identification of lifted state-space models for general dual-rate systems. IEEE Trans. Circuits Syst. I, Regul. Pap. 52(6), 1179–1187 (2005) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Chen, L., Li, J.H., Ding, R.F.: Identification of the second-order systems based on the step response. Math. Comput. Model. 53(5–6), 1074–1083 (2011) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Liu, Y.J., Xiao, Y.S., Zhao, X.L.: Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model. Appl. Math. Comput. 215(4), 1477–1483 (2009) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Liu, Y.J., Xie, L., Ding, F.: An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multirate systems. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 223(4), 445–454 (2009) CrossRefGoogle Scholar
  40. 40.
    Shi, Y., Yu, B.: Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Trans. Autom. Control 54(7), 1668–1674 (2009) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Shi, Y., Fang, H.: Kalman filter based identification for systems with randomly missing measurements in a network environment. Int. J. Control 83(3), 538–551 (2010) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Ding, F., Gu, Y.: Performance analysis of the auxiliary model based least squares identification algorithm for one-step state delay systems. Int. J. Comput. Math. 89(15), 2019–2028 (2012) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Ding, F.: Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. (2013). doi: 10.1049/iet-cta.2012.0171 Google Scholar
  44. 44.
    Ding, F., Liu, X.G., Chu, J.: Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl. (2013). doi: 10.1049/iet-cta.2012.0313 Google Scholar
  45. 45.
    Ding, F.: Two-stage least squares based iterative estimation algorithm for CARARMA system modeling. Appl. Math. Model. 37(7), 4798–4808 (2013) CrossRefGoogle Scholar
  46. 46.
    Ding, F.: Decomposition based fast least squares algorithm for output error systems. Signal Process. 93(5), 1235–1242 (2013) CrossRefGoogle Scholar
  47. 47.
    Liu, Y.J., Sheng, J., Ding, R.F.: Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems. Comput. Math. Appl. 59(8), 2615–2627 (2010) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education)Jiangnan UniversityWuxiP.R. China
  2. 2.Control Science and Engineering Research CenterJiangnan UniversityWuxiP.R. China

Personalised recommendations