Advertisement

Nonlinear Dynamics

, Volume 73, Issue 1–2, pp 535–549 | Cite as

Steady-state analysis of the Anaerobic Digestion Model No. 1 (ADM1)

  • Astrid Bornhöft
  • Richard Hanke-RauschenbachEmail author
  • Kai Sundmacher
Original Paper

Abstract

The steady-state behavior of the Anaerobic Digestion Model No. 1 (ADM1) with respect to dilution rate and substrate concentration is analyzed in this study. Thereby, up to ten coexisting steady-state solutions are observed under the same operating conditions. The parameter region of a methane producing operation is limited regarding high dilution rates as well as low or high substrate concentrations. The underlying mechanisms causing those limits are investigated in detail, and the common core is identified, namely a positive feedback loop between growth of acetate degraders and acetate itself. The difference lies in the activation mechanisms of this feedback loop, which differs in the three investigated cases.

The comparison of the present results with literature studies of simpler two-step models reveals qualitative differences regarding the substrate concentration. Therefore, an alternative simplified model is suggested, which shows qualitatively the same bifurcation behavior as the ADM1 considering variation of the substrate concentration.

Keywords

ADM1 Anaerobic digestion Steady-state multiplicity Bifurcation Biogas production 

Notes

Acknowledgements

This work was funded by the Federal State of Saxony-Anhalt under the grant Green-FC (6003398800).

References

  1. 1.
    Bailey, J.E., Ollis, D.F.: Biochemical Engineering Fundamentals, 2nd edn. McGraw-Hill Chemical Engineering Series. McGraw-Hill, New York (1986) Google Scholar
  2. 2.
    Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A.: The Iwa Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 45(10), 65–73 (2002) Google Scholar
  3. 3.
    Batstone, D.J., Keller, J., Steyer, J.P.: A review of adm1 extensions, applications, and analysis: 2002–2005. Water Sci. Technol. 54(4), 1–10 (2006) CrossRefGoogle Scholar
  4. 4.
    Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., Steyer, J.P.: Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75(4), 424–438 (2001) CrossRefGoogle Scholar
  5. 5.
    Blumensaat, F., Keller, J.: Modelling of two-stage anaerobic digestion using the iwa anaerobic digestion model no. 1 (adm1). Water Res. 39(1), 171–183 (2005) CrossRefGoogle Scholar
  6. 6.
    Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a Matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. 29(2), 141–164 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Droste, P., Miebach, S., Niedenführ, S., Wiechert, W., Nöh, K.: Visualizing multi-omics data in metabolic networks with the software omix—a case study. Biosystems 105(2), 154–161 (2011) CrossRefGoogle Scholar
  8. 8.
    Galí, A., Benabdallah, T., Astals, S., Mata-Alvarez, J.: Modified version of adm1 model for agro-waste application. Bioresour. Technol. 100(11), 2783–2790 (2009) CrossRefGoogle Scholar
  9. 9.
    de Gracia, M., Sancho, L., Garcia-Heras, J.L., Vanrolleghem, P., Ayesa, E.: Mass and charge conservation check in dynamic models: application to the new adm1 model. Water Sci. Technol. 53(1), 225–240 (2006) CrossRefGoogle Scholar
  10. 10.
    Klocke, M., Mahnert, P., Mundt, K., Souidi, K., Linke, B.: Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst. Appl. Microbiol. 30(2), 139–151 (2007) CrossRefGoogle Scholar
  11. 11.
    Koch, K., Lubken, M., Gehring, T., Wichern, M., Horn, H.: Biogas from grass silage—measurements and modeling with adm1. Bioresour. Technol. 101(21), 8158–8165 (2010) CrossRefGoogle Scholar
  12. 12.
    Lyberatos, G., Pullammanappallil, P.C.: Anaerobic digestion in suspended growth bioreactors. In: Wang, L.K., Ivanov, V., Tay, J.H. (eds.) Environmental Biotechnology, Handbook of Environmental Engineering, vol. 10, pp. 395–438. Humana Press, Clifton (2010) CrossRefGoogle Scholar
  13. 13.
    Marsili-Libelli, S., Beni, S.: Shock load modelling in the anaerobic digestion process. Ecol. Model. 84(1–3), 215–232 (1996) CrossRefGoogle Scholar
  14. 14.
    Rincon, A., Angulo, F.O.G.: Control of an anaerobic digester through normal form of fold bifurcation. J. Process Control 19(8), 1355–1367 (2009) CrossRefGoogle Scholar
  15. 15.
    Sbarciog, M., Loccufier, M., Noldus, E.: Determination of appropriate operating strategies for anaerobic digestion systems. Biochem. Eng. J. 51(3), 180–188 (2010) CrossRefGoogle Scholar
  16. 16.
    Shen, S.W., Premier, G.C., Guwy, A., Dinsdale, R.: Bifurcation and stability analysis of an anaerobic digestion model. Nonlinear Dyn. 48(4), 391–408 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Tomei, M.C., Braguglia, C.M., Cento, G., Mininni, G.: Modeling of anaerobic digestion of sludge. Crit. Rev. Environ. Sci. Technol. 39(12), 1003–1051 (2009) CrossRefGoogle Scholar
  18. 18.
    Volcke, E.I.P., Sbarciog, M., Noldus, E.J.L., De Baets, B., Loccufier, M.: Steady state multiplicity of two-step biological conversion systems with general kinetics. Math. Biosci. 228(2), 160–170 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Wei, C., Chen, L.: Dynamic analysis of mathematical model of ethanol fermentation with gas stripping. Nonlinear Dyn. 57(1–2), 13–23 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Zhao, Z., Yang, L., Chen, L.: Bifurcation and chaos of biochemical reaction model with impulsive perturbations. Nonlinear Dyn. 63(4), 521–535 (2011) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Astrid Bornhöft
    • 1
  • Richard Hanke-Rauschenbach
    • 2
    Email author
  • Kai Sundmacher
    • 1
    • 2
  1. 1.Process Systems EngineeringOtto-von-Guericke University MagdeburgMagdeburgGermany
  2. 2.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany

Personalised recommendations