Simulating the formation of spiral wave in the neuronal system

  • 522 Accesses

  • 49 Citations


Some experimental results have confirmed that a spiral wave could be observed in the cortex of brain. The biological Hodgkin–Huxley neurons are used to construct a regular network with nearest-neighbor connection, artificial line defects are generated to block the traveling wave in the network, and the potential mechanism for formation of spiral wave is investigated. A target wave is generated in a local area by imposing two external forcing currents with diversity (I 0I 1) in different areas of the network. It is confirmed that spiral wave could be induced by the defects even if no specific initial values are used. A single perfect spiral wave can occupy the network when the coupling intensity exceeds certain threshold; otherwise, a group of spiral waves emerges in the network. Certain channel noise can enhance the diversity (I 0I 1) for generating target wave, and then spiral waves are induced by blocking the target wave with defects under no-flux and/or periodic boundary conditions in the network.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Huang, X.Y., Troy, W.C., Yang, Q.C., et al.: Spiral waves in disinhibited mammalian cortex. J. Neurosci. 24, 9897 (2004)

  2. 2.

    Schiff, S.J., Huang, X.Y., Wu, J.Y.: Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. Phys. Rev. Lett. 98, 178102 (2007)

  3. 3.

    Wu, J.Y., Huang, X.Y., Zhang, C.: Propagating waves of activity in the neocortex: what they are, what they do? Neuroscientist 14, 48 (2008)

  4. 4.

    Huang, X.Y., Xu, W.F., Liang, J.M., et al.: Spiral wave dynamics in neocortex. Neuron 68, 978–990 (2010)

  5. 5.

    Chen, H.S., Zhang, J.Q., Liu, J.Q.: Enhancement of neuronal coherence by diversity in coupled Rulkov-map models. Physica A 87, 1071–1076 (2008)

  6. 6.

    Chen, H.S., Zhang, J.Q.: Diversity-induced coherence resonance in spatial extended chaotic systems. Phys. Rev. E 77, 026207 (2008)

  7. 7.

    Liu, Z.Q., Zhang, H.M., Li, Y.Y., et al.: Multiple spatial coherence resonance induced by stochastic signal in neuronal networks near a saddle-node bifurcation. Physica A 389, 2642–2653 (2010)

  8. 8.

    Zhang, J.Q., Wang, C.D., Wang, M.S., et al.: Firing patterns transition induced by system size in coupled Hindmarsh–Rose neural system. Neurocomputing 74, 2961–2966 (2011)

  9. 9.

    Li, Y.Y., Jia, B., Gu, H.G., et al.: Diversity induced multiple spatial coherence resonances and spiral waves in neuronal network with and without noise. Commun. Theor. Phys. 57, 817–824 (2012)

  10. 10.

    Tang, Z., Li, Y.Y., Xi, L., et al.: Spiral waves and multiple spatial coherence resonances induced by the colored noise in neuronal network. Commun. Theor. Phys. 57, 61–67 (2012)

  11. 11.

    Gu, H.G., Jia, B., Li, Y.Y., et al.: White noise-induced spiral waves and multiple spatial coherence resonances in a neuronal network with type I excitability. Physica A (2012). doi:10.1016/j.physa.2012.11.049

  12. 12.

    Mermin, N.D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979)

  13. 13.

    Hagan, P.S.: Spiral waves in reaction-diffusion equations. SIAM J. Appl. Math. 42, 762–786 (1982)

  14. 14.

    Winston, D., Arora, M., Maselko, J., et al.: Cross-membrane coupling of chemical spatiotemporal patterns. Nature 351, 132–135 (1991)

  15. 15.

    Cross, M., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

  16. 16.

    Barkley, D.: Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72, 164–167 (1994)

  17. 17.

    Ouyang, Q., Flesselles, J.M.: Transition from spirals to defect turbulence driven by a convective instability. Nature 379, 143–146 (1996)

  18. 18.

    Petrov, V., Ouyang, Q., Swinney, H.L.: Resonant pattern formation in a chemical system. Nature 388, 655–657 (1997)

  19. 19.

    Tobias, S.M., Knobloch, E.: Breakup of spiral waves into chemical turbulence. Phys. Rev. Lett. 80, 4811–4814 (1998)

  20. 20.

    Gollub, J.P., Langer, J.S.: Pattern formation in nonequilibrium physics. Rev. Mod. Phys. 71, 396–403 (1999)

  21. 21.

    Leung, K.T., Józsa, L., Ravasz, M.: Spiral cracks without twisting. Nature 410, 166 (2001)

  22. 22.

    Alonso, S., Sagués, F., Mikhailov, A.S.: Taming winfree turbulence of scroll waves in excitable media. Science 299, 1722–1725 (2003)

  23. 23.

    Hou, Z.H., Xin, H.W.: Noise-sustained spiral waves: effect of spatial and temporal memory. Phys. Rev. Lett. 89, 280601 (2002)

  24. 24.

    Panfilov, A.V., Keldermann, R.H., Nash, M.P.: Self-organized pacemakers in a coupled reaction-diffusion-mechanics system. Phys. Rev. Lett. 95, 258104 (2005)

  25. 25.

    Wang, C.N., Ma, J., Liu, Y., et al.: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67, 139–146 (2012)

  26. 26.

    Wang, P.Y., Xie, P., Yin, W.H.: Control of spiral waves and turbulent states in a cardiac model by travelling-wave perturbations. Chin. Phys. 12, 674–679 (2005)

  27. 27.

    Wu, N.J., Gao, H.J., Ma, J., et al.: Adjustment of spiral drift by a travelling wave perturbation. Nonlinear Dyn. 67, 159–164 (2012)

  28. 28.

    Sinha, S., Pande, A., Pandit, R.: Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation. Phys. Rev. Lett. 86, 3678–3681 (2001)

  29. 29.

    Takagi, S., Pumir, A., Pazó, D., et al.: Unpinning and removal of a rotating wave in cardiac muscle. Phys. Rev. Lett. 93, 058101 (2004)

  30. 30.

    Zhang, H., Cao, Z.J., Wu, N.J., et al.: Suppress winfree turbulence by local forcing excitable systems. Phys. Rev. Lett. 94, 188301 (2005)

  31. 31.

    Lou, Q., Chen, J.X., Zhao, Y.H., et al.: Control of turbulence in heterogeneous excitable media. Phys. Rev. E 85, 026213 (2012)

  32. 32.

    Jiménez, Z.A., Marts, B., Steinbock, O.: Pinned scroll rings in an excitable system. Phys. Rev. Lett. 102, 244101 (2009)

  33. 33.

    Ma, J., Ying, H.P., Li, Y.L.: Suppression of spiral waves using intermittent local electric shock. Chin. Phys. 16, 955–961 (2007)

  34. 34.

    Ma, J., Wang, C.N., Tang, J., et al.: Eliminate spiral wave in excitable media by using a new feasible scheme. Commun. Nonlinear Sci. Numer. Simul. 15, 1768–1776 (2010)

  35. 35.

    Ma, J., Yi, M., Li, B.W., et al.: Evolution of spiral wave and pattern formation in a vortical polarized electric field. Chin. Phys. B 17, 2438–2445 (2008)

  36. 36.

    He, D.H., Hu, G., Zhan, M., et al.: Pattern formation of spiral waves in an inhomogeneous medium with small-world connections. Phys. Rev. E 65, 055204 (2002)

  37. 37.

    Perc, M.: Spatial decoherence induced by small-world connectivity in excitable media. New J. Phys. 7, 252 (2005)

  38. 38.

    Zhang, X.M., Fu, M.L., Xiao, J.H., et al.: Self-organization of chaos synchronization and pattern formation in coupled chaotic oscillators. Phys. Rev. E 74, 015202 (2006)

  39. 39.

    Perc, M.: Effects of small-world connectivity on noise-induced temporal and spatial order in neural media. Chaos Solitons Fractals 31, 280–291 (2007)

  40. 40.

    Sinha, S., Saramaki, J., Kaski, K.: Emergence of self-sustained patterns in small-world excitable media. Phys. Rev. E 76, 015101 (2007)

  41. 41.

    Wang, Q.Y., Perc, M., Duan, Z.S., et al.: Delay-enhanced coherence of spiral waves in noisy Hodgkin–Huxley neuronal networks. Phys. Lett. A 372, 5681–5687 (2008)

  42. 42.

    Qian, Y., Huang, X.D., Hu, G., et al.: Structure and control of self-sustained target waves in excitable small-world networks. Phys. Rev. E 81, 036101 (2010)

  43. 43.

    Ma, J., Yang, L.J., Wu, Y., et al.: Spiral wave in the small-world networks of Hodgkin–Huxley neurons. Commun. Theor. Phys. 54, 583–588 (2010)

  44. 44.

    Ma, J., Jia, Y., Wang, C.N., et al.: Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin–Huxley neurons. Appl. Math. Comput. 217, 3844–3852 (2010)

  45. 45.

    Wang, C.N., Ma, J., Tang, J.: Instability and death of spiral wave in a two-dimensional array of Hindmarsh–Rose neurons. Commun. Theor. Phys. 53, 382–388 (2010)

  46. 46.

    Ma, J., Tang, J., Zhang, A.H., et al.: Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Sci. China, Phys. Mech. Astron. 53, 672–679 (2010)

  47. 47.

    Ma, J., Wu, Y., Ying, H.P., et al.: Channel noise-induced phase transition of spiral wave in networks of Hodgkin–Huxley neurons. Chin. Sci. Bull. 56, 151–157 (2011)

  48. 48.

    Ma, J., Huang, L., Ying, H.P., et al.: Detecting the breakup of spiral wave in small-world networks of neurons due to channel block. Chin. Sci. Bull. 57, 2094–2101 (2012)

  49. 49.

    Liao, X.D., Xia, Q.Z., Qian, Y., et al.: Pattern formation in oscillatory complex networks consisting of excitable nodes. Phys. Rev. E 83, 056204 (2011)

  50. 50.

    Park, J.S., Lee, K.: Formation of a spiraling line defect and its meandering transition in a period-2 medium. Phys. Rev. Lett. 88, 224501 (2002)

  51. 51.

    Zhan, M., Kapral, R.: Model for line defects in complex-oscillatory spiral waves. Phys. Rev. E 72, 046221 (2005)

  52. 52.

    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

  53. 53.

    Liu, F., Yu, Y.G., Wang, W.: Signal-to-noise ratio gain in neuronal systems. Phys. Rev. E 63, 051912 (2001)

  54. 54.

    Liu, F., Hu, B.B., Wang, W.: Effects of correlated and independent noise on signal processing in neuronal systems. Phys. Rev. E 63, 031907 (2001)

  55. 55.

    Ma, J., Huang, L., Ying, H.P., et al.: Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks. Commun. Nonlinear Sci. Numer. Simul. 17, 4281–4293 (2012)

  56. 56.

    Fox, R.F., Lu, Y.N.: Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E 49, 3421 (2004)

  57. 57.

    Ma, J., Liu, Q.R., Ying, H.P., et al.: Emergence of spiral wave induced by defects block. Commun. Nonlinear Sci. Numer. Simul. (2012). doi:10.1016/j.cnsns.2012.11.016

Download references


This work is partially supported by the National Natural Science Foundation of China under Grant No. 11265008.

Author information

Correspondence to Jun Ma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, J., Hu, B., Wang, C. et al. Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn 73, 73–83 (2013) doi:10.1007/s11071-013-0767-1

Download citation


  • Target wave
  • Spiral wave
  • Defects
  • Network
  • Factor of synchronization