Nonlinear Dynamics

, Volume 73, Issue 1–2, pp 17–27 | Cite as

T–S fuzzy control design for a class of nonlinear networked control systems

  • Sung Hyun KimEmail author
Original Paper


This paper is devoted to controlling a class of nonlinear systems over a communication network in the presence of packet transmission delays, packet losses, quantization errors, and sampling-related phenomena. Specifically, based on the Takagi–Sugeno (T–S) fuzzy approach, this paper presents a way of designing a quantized controller that allows all the states of nonlinear NCSs to converge exponentially to a bounded ellipsoid. In particular, this paper provides a method capable of exploiting fully the time-varying delay term d(t), induced by Jensen inequality, for nonlinear NCSs.


T–S fuzzy model Networked control system (NCS) Lyapunov–Krasovskii functional Quantization 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012013687).


  1. 1.
    Chiu, C.-S.: T–S fuzzy maximum power point tracking control of solar power generation systems. IEEE Trans. Energy Convers. 25(4), 1123–1132 (2010) CrossRefGoogle Scholar
  2. 2.
    Choi, H.H., Jung, J.-W.: Fuzzy speed control with an acceleration observer for a permanent magnet synchronous motor. Nonlinear Dyn. 67, 1717–1727 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    El Ghaoui, L., Oustry, F., Ait-Rami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Autom. Control 42(8), 1171–1176 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhauser, Lausanne (2003) zbMATHCrossRefGoogle Scholar
  5. 5.
    Hou, Y.-Y.: Reliable stabilization of networked control systems with actuator faults. Nonlinear Dyn. (2012). doi: 10.1007/s11071-012-0671-0 Google Scholar
  6. 6.
    Jia, X., Zhang, D., Zheng, L., Zheng, N.: Modeling and stabilization for a class of nonlinear networked control systems: a T–S fuzzy approach. Prog. Nat. Sci. 18(8), 1031–1037 (2008) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jiang, X., Han, Q.-L.: On designing fuzzy controllers for a class of nonlinear networked control systems. IEEE Trans. Fuzzy Syst. 16(4), 1050–1060 (2008) CrossRefGoogle Scholar
  8. 8.
    Kim, D.W., Lee, H.J.: Comments on “T–S fuzzy-model-based robust \({\mathcal{H}}_{\infty}\) design for networked control systems with uncertainties”. IEEE Trans. Ind. Inform. 5(4), 507 (2009) Google Scholar
  9. 9.
    Kim, S.H., Park, P.: Networked-based robust \({\mathcal{H}}_{\infty}\) control design using multiple levels of network traffic. Automatica 45, 764–770 (2009) zbMATHCrossRefGoogle Scholar
  10. 10.
    Kim, S.H., Park, P.: \({\mathcal{H}}_{\infty}\) state-feedback-control design for discrete-time fuzzy systems using relaxation technique for parameter LMI. IEEE Trans. Fuzzy Syst. 18(5), 985–993 (2010) CrossRefGoogle Scholar
  11. 11.
    Kim, S.H., Park, P., Jeong, C.: Robust \({\mathcal{H}}_{\infty}\) stabilisation of networked control systems with packet analyser. IET Control Theory Appl. 4(9), 1828–1837 (2010) CrossRefGoogle Scholar
  12. 12.
    Lam, H.K.: Sampled-data fuzzy-model-based control systems: stability analysis with consideration of analogue-to-digital converter and digital-to-analogue converter. IET Control Theory Appl. 4(7), 1131–1144 (2010) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lee, H.J., Park, J.B., Joo, Y.H.: Robust control for uncertain Takagi–Sugeno fuzzy systems with time-varying input delay. J. Dyn. Syst. Meas. Control 127, 302–306 (2005) zbMATHCrossRefGoogle Scholar
  14. 14.
    Li, L., Liu, X.: New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays. Inf. Syst. 179, 1134–1148 (2009) zbMATHGoogle Scholar
  15. 15.
    Li, J., Wang, H.O., Niemann, D., et al.: Dynamic parallel distributed compensation for Takagi–Sugeno fuzzy systems: an LMI approach. Inf. Syst. 123(3–4), 201–221 (2000) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lian, K.-Y., Chiang, C.-H., Tu, H.-W.: LMI-based sensorless control of permanent-magnetic synchronous motors. IEEE Trans. Ind. Electron. 54(5), 2769–2779 (2007) CrossRefGoogle Scholar
  17. 17.
    Lien, C.H., Yu, K.W.: Robust control for Takagi–Sugeno fuzzy systems with time-varying state and input delays. Chaos Solitons Fractals 35(5), 1003–1008 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Liu, W., Wang, Z., Zhang, W.: Controlled synchronization of discrete-time chaotic systems under communication constraints. Nonlinear Dyn. 69, 223–230 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Park, P., Ko, J.W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235–238 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Petres, Z., Baranyi, P., Korondi, P., Hashimoto, H.: Trajectory tracking by TP model transformation: case study of a benchmark problem. IEEE Trans. Ind. Electron. 54(3), 1654–1663 (2007) CrossRefGoogle Scholar
  21. 21.
    Qiu, J., Feng, G., Gao, H.: Fuzzy-model-based piecewise \({\mathcal{H}}_{\infty}\) static-output-feedback controller design for networked nonlinear systems. IEEE Trans. Fuzzy Syst. 18(5), 919–934 (2010) CrossRefGoogle Scholar
  22. 22.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15, 116–132 (1985) CrossRefGoogle Scholar
  23. 23.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach. Wiley, New York (2001) CrossRefGoogle Scholar
  24. 24.
    Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998) CrossRefGoogle Scholar
  25. 25.
    Teixeira, M.C.M., Żak, S.H.: Stabilizing control design for uncertain nonlinear systems using fuzzy models. IEEE Trans. Autom. Control 7(2), 133–142 (1999) Google Scholar
  26. 26.
    Tian, E., Yue, D., Yang, T.C., Gu, Z., Lu, G.: T–S fuzzy model-based robust stabilization for networked control systems with probabilistic sensor and actuator failure. IEEE Trans. Fuzzy Syst. 19(3), 553–561 (2011) CrossRefGoogle Scholar
  27. 27.
    Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001) CrossRefGoogle Scholar
  28. 28.
    Wang, G., Li, L., Wu, B.: Robust stability of nonlinear model-based networked control systems with time-varying transmission times. Nonlinear Dyn. 69, 1351–1363 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Wen, S., Zeng, Z., Huang, T.: Robust \({\mathcal{H}}_{\infty}\) output tracking control for fuzzy networked systems with stochastic sampling and multiplicative noise. Nonlinear Dyn. 70, 1061–1077 (2012) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Xie, G., Wang, L.: Stabilization of NCSs: asynchronous partial transfer approach. In: American Control Conference, Portland, OR, USA (2005) Google Scholar
  31. 31.
    Xiu, Z.H., Ren, G.: Stability analysis and systematic design of Takagi–Sugeno fuzzy control systems. Fuzzy Sets Syst. 151(1), 119–138 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Yun, S.W., Choi, Y.J., Park, P.-G.: Dynamic output-feedback guaranteed cost control for linear systems with uniform input quantization. Nonlinear Dyn. 62, 95–104 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Zhang, H., Yang, J., Su, C.-Y.: T–S fuzzy-model-based robust \({\mathcal{H}}_{\infty}\) design for networked control systems with uncertainties. IEEE Trans. Ind. Inform. 3(4), 289–301 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Electrical EngineeringUniversity of UlsanUlsanKorea

Personalised recommendations