Advertisement

Nonlinear Dynamics

, Volume 72, Issue 1–2, pp 101–112 | Cite as

A sufficient descent Dai–Yuan type nonlinear conjugate gradient method for unconstrained optimization problems

  • Xian-zhen Jiang
  • Jin-bao Jian
Original Paper

Abstract

The nonlinear conjugate gradient method (CGM) is a very effective way in solving large-scale optimal problems. In this paper, a modification to the Dai–Yuan (DY) nonlinear CGM is discussed, and then a sufficient descent CGM for unconstrained optimization is proposed. Unlike the DY CGM, at each iteration, the presented CGM always generates a sufficient descent direction depending on no line search. Under usual assumptions, the modified DY CGM with the Wolfe line search is proved to possess global convergence. Moreover, the idea is further extended to the Fletcher–Reeves (FR) CGM. Finally, a large amount of numerical experiments are executed and reported, which show that the proposed methods are effective.

Keywords

Unconstrained optimization Conjugate gradient method Sufficient descent property Global convergence 

Notes

Acknowledgements

The author wishes to thank the reviewers for their constructive and pertinent suggestions for improving the presentation of the work. This work is supported by the National Natural Science Foundation of China (Grant No. 11271086), the Guangxi Natural Science Foundation of China (Grant No. 2011GXNSFD018002) and Innovation Group of Talents Highland of Guang Xi higher School.

References

  1. 1.
    Balaram, B., Narayanan, M.D., Rajendrakumar, P.K.: Optimal design of multi-parametric nonlinear systems using a parametric continuation based genetic algorithm approach. Nonlinear Dyn. 67(2), 1669–1681 (2012) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Zhang, L.M., Gao, H.T., Chen, Z.Q.: Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method. Nonlinear Dyn. (2012). doi: 10.1007/s11071-012-0586-9
  3. 3.
    Hestenes, M.R., Stiefel, E.L.: Method of conjugate gradient for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Polak, B., Ribière, G.: Note surla convergence des mèthodes de directions conjugèes. Rev. Fr. Inform. Rech. Oper. 3(1), 35–43 (1969) zbMATHGoogle Scholar
  6. 6.
    Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9, 94–112 (1969) CrossRefGoogle Scholar
  7. 7.
    Dai, Y.H., Yuan, Y.X.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Al-Baali, M.: Descent property and global convergence of the Flecter–Reeves method with inexact line search. IMA J. Numer. Anal. 5, 121–124 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Liu, Y.L., Storey, C.S.: Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory Appl. 69, 129–137 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dai, Y.H., Yuan, Y.X.: Nonlinear Conjugate Gradient Methods. Shanghai Scientific and Technical Publishers, Shanghai (2000) Google Scholar
  11. 11.
    Dai, Y.H.: A nonmonotone conjugate gradient algorithm for unconstrained optimization. J. Syst. Sci. Complex. 15, 139–145 (2002) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bai, Y.Q., Zhang, L.S.: The global convergence for conjugate gradient methods. Oper. Res. Trans. 4, 19–26 (2000) MathSciNetGoogle Scholar
  13. 13.
    Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Tang, C.M., Wei, Z.X., Li, G.Y.: A new version of the Liu-Storey conjugate gradient method. Appl. Math. Comput. 189, 302–313 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dai, Z.F.: Two modified HS type conjugate gradient methods for unconstrained optimization problems. Nonlinear Anal. 74, 927–936 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Dai, Z.F., Wen, F.H.: Another improved Wei–Yao–Liu nonlinear conjugate gradient method with sufficient descent property. Appl. Math. Comput. 218, 7421–7430 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Jiang, X.Z., Han, L., Jian, J.B.: A globally convergent mixed conjugate gradient method with Wolfe line search. Math. Numer. Sin. 34(1), 103–112 (2012) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Zoutendijk, G.: Nonlinear programming computational methods. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 37–86. North-Holland, Amsterdam (1970) Google Scholar
  19. 19.
    Morè, J.J., Garbow, B.S., Hillstrome, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981) zbMATHCrossRefGoogle Scholar
  20. 20.
    Dolan, E.D., Morè, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceYulin Normal UniversityYulinP.R. China
  2. 2.College of Mathematics and Information ScienceGuangxi UniversityNanningP.R. China

Personalised recommendations