Nonlinear Dynamics

, Volume 72, Issue 1–2, pp 9–15

Complex projective synchronization in drive-response networks coupled with complex-variable chaotic systems

Original Paper

Abstract

In drive-response complex-variable systems, projective synchronization with respect to a real number, real matrix, or even real function means that drive-response systems evolve simultaneously along the same or inverse direction in a complex plane. However, in many practical situations, the drive-response systems may evolve in different directions with a constant intersection angle. Therefore, this paper investigates projective synchronization in drive-response networks of coupled complex-variable chaotic systems with respect to complex numbers, called complex projective synchronization (CPS). The adaptive feedback control method is adopted first to achieve CPS in a general drive-response network. For a special class of drive-response networks, the CPS is achieved via pinning control. Furthermore, a universal pinning control scheme is proposed via the adaptive coupling strength method, several simple and useful criteria for CPS are obtained, and all results are illustrated by numerical examples.

Keywords

Complex projective synchronization Complex-variable Chaotic Pinning control 

References

  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Jiang, H., Bi, Q.: Contraction theory based synchronization analysis of impulsively coupled oscillators. Nonlinear Dyn. 67, 781–791 (2012) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I 54, 1317–1326 (2007) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50, 841–846 (2005) CrossRefGoogle Scholar
  5. 5.
    Zhou, J., Lu, J., Lü, J.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Autom. Control 51, 652–656 (2006) CrossRefGoogle Scholar
  6. 6.
    Zhou, J., Lu, J., Lü, J.: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44, 996–1003 (2008) CrossRefGoogle Scholar
  7. 7.
    Wu, Z., Fu, X.: Adaptive function projective synchronization of discrete chaotic systems with unknown parameters. Chin. Phys. Lett. 27, 050502 (2010) CrossRefGoogle Scholar
  8. 8.
    Lü, J., Yu, X., Chen, G., Cheng, D.: Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits Syst. I 51, 787–796 (2004) CrossRefGoogle Scholar
  9. 9.
    Wu, X., Zheng, W., Zhou, J.: Generalized outer synchronization between complex dynamical networks. Chaos 19, 013109 (2009) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009) MATHCrossRefGoogle Scholar
  11. 11.
    Rao, P., Wu, Z., Liu, M.: Adaptive projective synchronization of dynamical networks with distributed time delays. Nonlinear Dyn. 67, 1729–1736 (2012) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Wu, Z., Fu, X.: Cluster mixed synchronization via pinning control and adaptive coupling strength in community networks with nonidentical nodes. Commun. Nonlinear Sci. Numer. Simul. 17, 1628–1636 (2012) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Hu, M., Yang, Y., Xu, Z., Zhang, R., Guo, L.: Projective synchronization in drive-response dynamical networks. Physica A 381, 457–466 (2007) CrossRefGoogle Scholar
  14. 14.
    Liu, J., Lu, J., Tang, Q.: Projective synchronization in chaotic dynamical networks. In: Proceed. of the First Int. Confer. Innov. Comput. Inform. Contr, vol. 1, pp. 729–732 (2006) Google Scholar
  15. 15.
    Wu, D., Li, J.: Generalized projective synchronization via the state observer and its application in secure communication. Chin. Phys. B 19, 120505 (2010) CrossRefGoogle Scholar
  16. 16.
    Wu, X., Wang, H., Lu, H.: Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Anal., Real World Appl. 12, 1288–1299 (2011) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Sun, Y.J.: Generalized projective synchronization for a class of chaotic systems with parameter mismatching, unknown external excitation, and uncertain input nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 16, 3863–3870 (2011) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Ghosh, D.: Generalized projective synchronization in timedelayed systems: nonlinear observer approach. Chaos 19, 013102 (2009) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cai, N., Jing, Y., Zhang, S.: Modified projective synchronization of chaotic systems with disturbances via active sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 15, 1613–1620 (2010) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Wen, G.: Designing Hopf limit circle to dynamical systems via modified projective synchronization. Nonlinear Dyn. 63, 387–393 (2011) CrossRefGoogle Scholar
  21. 21.
    Yu, Y., Li, H.: Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. Nonlinear Anal., Real World Appl. 12, 388–393 (2011) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Zhang, R., Yang, Y., Xu, Z., Hu, M.: Function projective synchronization in drive-response dynamical network. Phys. Lett. A 374, 3025–3028 (2010) MATHCrossRefGoogle Scholar
  23. 23.
    Fowler, A.C., Gibbon, J.D., McGuinness, M.J.: The complex Lorenz equations. Physica D 4, 139–163 (1982) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Rauh, A., Hannibal, L., Abraham, N.: Global stability properties of the complex Lorenz model. Physica D 99, 45–58 (1996) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Gibbon, J.D., McGuinnes, M.J.: The real and complex Lorenz equations in rotating fluids and lasers. Physica D 5, 108–122 (1982) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Vladimirov, A.G., Toronov, V.Y., Derbov, V.L.: The complex Lorenz model: geometric structure, homoclinic bifurcation and one-dimensional map. Int. J. Bifurc. Chaos 8, 723–729 (1998) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: Active control and global synchronization for complex Chen and Lü systems. Int. J. Bifurc. Chaos 17, 4295–4308 (2007) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Mahmoud, G.M., Bountis, T., AbdEl-Latif, G.M., Mahmoud, E.E.: Chaos synchronization of two different chaotic complex Chen and Lü systems. Nonlinear Dyn. 55, 43–53 (2009) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Nian, F., Wang, X., Niu, Y., Lin, D.: Module-phase synchronization in complex dynamic system. Appl. Math. Comput. 217, 2481–2489 (2010) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Hu, M., Yang, Y., Xu, Z., Guo, L.: Hybrid projective synchronization in a chaotic complex nonlinear system. Math. Comput. Simul. 79, 449–457 (2008) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Liu, S., Liu, P.: Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Anal., Real World Appl. 12, 3046–3055 (2011) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Mahmoud, G.M., Aly, S.A., Farghaly, A.A.: On chaos synchronization of a complex two coupled dynamos system. Chaos Solitons Fractals 33, 178–187 (2007) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Wu, Z., Duan, J., Fu, X.: Complex projective synchronization in coupled chaotic complex dynamical systems. Nonlinear Dyn. 69, 771–779 (2012) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceJiangxi Normal UniversityNanchangChina
  2. 2.Department of MathematicsShanghai UniversityShanghaiChina

Personalised recommendations