Nonlinear Dynamics

, Volume 71, Issue 3, pp 489–492 | Cite as

An efficient method for the construction of block cipher with multi-chaotic systems

  • Majid Khan
  • Tariq Shah
  • Hasan Mahmood
  • Muhammad Asif Gondal
Original Paper


In this article, we present a method to synthesize strong nonlinear components used in encryption algorithms. The proposed nonlinear component assists in transforming the intelligible message or plaintext into an enciphered format by the use of Lorenz and Rössler chaotic systems. A substitution box is generated that uses initial conditions, utilize multi-chaotic parameter values, and employ numerical simulations.


Multi-chaotic systems Block cipher Lorenz and Rössler systems 


  1. 1.
    Shannon, C.E.: Science of chaos and cryptology. Bell Syst. Tech. J. 28, 656 (1949) MathSciNetMATHGoogle Scholar
  2. 2.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: A projective general linear group based algorithm for the construction of substitution box for block ciphers. Neural Comput. Appl. (2012). doi: 10.1007/s00521-012-0870-0 Google Scholar
  3. 3.
    Hussain, I., Shah, T., Mahmood, H., Gondal, M.A.: A group theoretic approach to construct cryptographically strong substitution boxes. Neural Comput. Appl. (2012). doi: 10.1007/s00521-012-0914-5 Google Scholar
  4. 4.
    Shah, T., Hussain, I., Gondal, M.A.: Image encryption algorithm based on PGL(2,GF(28)) S-boxes and TD-ERCS chaotic sequence. Nonlinear Dyn. (2012). doi: 10.1007/s11071-012-0440-0 Google Scholar
  5. 5.
    Hussain, I., Shah, T., Mahmood, H., Gondal, M.A.: S8 affine power affine S-boxes and their application. Neural Comput. Appl. (2012). doi: 10.1007/s00521-012-1036-9 Google Scholar
  6. 6.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: Construction of S8 Lui J S-boxes and their application. Comput. Math. Appl. (2012). doi: 10.1016/j.camwa.2012.05.017 MathSciNetGoogle Scholar
  7. 7.
    Hussain, I., Shah, T., Gondal, M.A.: An efficient image encryption algorithm based on S8 S-box transformation and NCA map. Opt. Commun. (2012). doi: 10.1016/j.optcom.2012.06.011 Google Scholar
  8. 8.
    Hussain, I., Shah, T., Gondal, M.A., Wang, Y.: Analyses of SKIPJACK S-box. World Appl. Sci. J. 13(11), 2385–2388 (2011) Google Scholar
  9. 9.
    Shah, T., Hussain, I., Gondal, M.A., Khan, W.A.: Construction of cryptographically strong 8×8 S-boxes. World Appl. Sci. J. 13(11), 2389–2395 (2011) Google Scholar
  10. 10.
    Hussain, I., Shah, T., Gondal, M.A., Khan, M., Khan, W.A.: Construction of new S-box using a linear fractional transformation. World Appl. Sci. J. 14(12), 1779–1785 (2011) Google Scholar
  11. 11.
    Shah, T., Hussain, I., Gondal, M.A., Mahmood, H.: Statistical analysis of S-box in image encryption applications based on majority logic criterion. Int. J. Phys. Sci. 6(16), 4110–4127 (2011) Google Scholar
  12. 12.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: Some analysis of S-box based on residue of prime number. Proc. Pak. Acad. Sci. 48(2), 111–115 (2011) MathSciNetGoogle Scholar
  13. 13.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: A new algorithm to construct secure keys for AES. Int. J. Contemp. Math. Sci. 5(26), 1263–1270 (2010) MathSciNetMATHGoogle Scholar
  14. 14.
    Hussain, I., Shah, T., Mahmood, H., Afzal, M.: Comparative analysis of S-boxes based on graphical SAC. Int. J. Comput. Appl. 2(4), 5–8 (2010) Google Scholar
  15. 15.
    Wang, Y., Wong, K.W., Liao, X., Xiang, T.: A block cipher with dynamic S-boxes based on tent map. Commun. Nonlinear Sci. Numer. Simul. 14, 3089 (2009) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Chen, G., Chen, Y., Liao, X.: An extended method for obtaining S-boxes based on three-dimensional chaotic baker maps. Chaos Solitons Fractals 31, 571 (2007) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Guoping, T., Xiaofeng, L., Yong, C.: A novel method for designing S-boxes based on chaotic maps. Chaos Solitons Fractals 23, 413 (2005) MATHCrossRefGoogle Scholar
  18. 18.
    Jakimoski, G., Kocarev, L.: Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. 48(2), 163 (2001) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Özkaynak, F., Bedri Özer, A.: A method for designing strong S-boxes based on chaotic Lorenz system. Phys. Lett. A 374, 3733–3738 (2010) MATHCrossRefGoogle Scholar
  20. 20.
    Khan, M., Shah, T., Mahmood, H., Gondal, M.A., Hussain, I.: A novel technique for the construction of strong S-boxes based on chaotic Lorenz systems. Nonlinear Dyn. (2012). doi: 10.1007/s11071-012-0621-x Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Majid Khan
    • 1
  • Tariq Shah
    • 1
  • Hasan Mahmood
    • 2
  • Muhammad Asif Gondal
    • 3
  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of ElectronicsQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.Department of Sciences and HumanitiesNational University of Computer and Emerging SciencesIslamabadPakistan

Personalised recommendations