Nonlinear Dynamics

, Volume 71, Issue 3, pp 417–427 | Cite as

Decentralized sliding mode quantized feedback control for a class of uncertain large-scale systems with dead-zone input

  • Bo-Chao Zheng
  • Guang-Hong Yang
Original Paper


This paper is concerned with the robust quantized feedback stabilization problem for a class of uncertain nonlinear large-scale systems with dead-zone nonlinearity in actuator devices. It is assumed that state signals of each subsystem are quantized and the quantized state signals are transmitted over a digital channel to the controller side. Combined with a proposed discrete on-line adjustment policy of quantization parameters, a decentralized sliding mode quantized feedback control scheme is developed to tackle parameter uncertainties and dead-zone input nonlinearity simultaneously, and ensure that the system trajectory of each subsystem converges to the corresponding desired sliding manifold. Finally, an example is given to verify the validity of the theoretical result.


Sliding mode Decentralized control Dead-zone Quantization Large-scale systems 



This work was supported in part by the Funds for Creative Research Groups of China (No. 60821063), the Funds of National Science of China (Grant Nos. 60974043, 60904010, 60804024, 60904025, 61273155), the Funds of Doctoral Program of Ministry of Education, China (20100042110027), the Fundamental Research Funds for the Central Universities (Nos. N090604001, N090604002, N100604022, N110804001). A Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (No. 201157).


  1. 1.
    Wen, C., Zhou, J.: Decentralized adaptive stabilization in presence of unknown backlash-like hysteresis. Automatica 43(3), 426–440 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Yan, X.G., Wang, J.J., Lv, X.Y., Zhang, S.Y.: Decentralized output feedback robust stabilization for a class of nonlinear interconnected systems with similarity. IEEE Trans. Autom. Control 43(2), 294–299 (1998) zbMATHCrossRefGoogle Scholar
  3. 3.
    Yan, X.G., Spurgeon, S.K., Edwards, C.: Decentralized robust sliding mode control for a class of nonlinear interconnected systems by static output feedback. Automatica 40(4), 613–620 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Yang, G.H., Wang, J.L.: Decentralized H controller design for composite systems: linear case. Int. J. Control 72(9), 815–825 (1999) zbMATHCrossRefGoogle Scholar
  5. 5.
    Yang, G.H., Zhang, S.Y.: Stabilizing controller for uncertain symmetric composite systems. Automatica 31(2), 337–340 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bakule, L.: Stabilization of uncertain switched symmetric composite systems. Nonlinear Anal. Hybrid Syst. 1(2), 188–197 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bakule, L.: Decentralized control: an overview. Annu. Rev. Control 32(1), 87–98 (2008) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mahmoud, M.S.: Decentralized stabilization of interconnected systems with time-varying delays. IEEE Trans. Autom. Control 54(11), 2663–2668 (2009) CrossRefGoogle Scholar
  9. 9.
    Duan, Z., Wang, J., Chen, G., Huang, L.: Stability analysis and decentralized control of a class of complex dynamical networks. Automatica 44(4), 1028–1035 (2008) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, R., Liu, Y.-J., Tong, S.-J.: Decentralized control of uncertain nonlinear stochastic systems based DSC. Nonlinear Dyn. 64(4), 305–314 (2011) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhou, J.: Decentralized adaptive control for large-scale time-delay systems with dead-zone input. Automatica 44(7), 1790–1799 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Yoo, S.J., Park, J.B., Choi, Y.H.: Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone input. Automatica 45(2), 436–443 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hung, J.Y., Gao, W.B., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993) CrossRefGoogle Scholar
  14. 14.
    Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Shyu, K.K., Liu, W.J., Hsu, K.C.: Design of large-scale time-delayed systems with dead-zone input via variable structure control. Automatica 41(7), 1239–1246 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Shyu, K.K., Liu, W.J., Hsu, K.C.: Decentralised variable structure control of uncertain large-scale systems containing a dead-zone. IEE Proc., Control Theory Appl. 150(5), 467–475 (2003) CrossRefGoogle Scholar
  17. 17.
    Elia, N., Mitter, S.K.: Stabilization of linear systems with limited information. IEEE Trans. Autom. Control 46(9), 1384–1400 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fu, M., Xie, L.: Quantized feedback control for linear uncertain systems. Int. J. Robust Nonlinear Control 20(8), 843–857 (2009) MathSciNetGoogle Scholar
  20. 20.
    Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear system. IEEE Trans. Autom. Control 45(7), 1279–1289 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39(9), 1543–1554 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Corradini, M.L., Orlando, G.: Robust quantized feedback stabilization of linear systems. Automatica 44(9), 2458–2462 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London (1998) Google Scholar
  24. 24.
    Yun, S.W., Choi, Y.J., Park, P.: H 2 control of continuous-time uncertain linear with input quantization and matched disturbances. Automatica 45(10), 2435–2439 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Zheng, B.C., Yang, G.H.: Robust quantized feedback stabilization of linear systems based on sliding mode control. Optim. Control Appl. Methods (2012). doi: 10.1002/oca.2032 Google Scholar
  26. 26.
    Hsu, K.C.: Decentralized variable structure control design for uncertain large-scale systems with series nonlinearities. Int. J. Control 68(6), 1231–1240 (1997) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.School of Information and ControlNanjing University of Information Science & TechnologyNanjingChina
  2. 2.College of Information Science and EngineeringNortheastern UniversityShenyangChina
  3. 3.State Key Laboratory of Synthetical Automation for Process IndustriesNortheastern UniversityShenyangChina

Personalised recommendations