Nonlinear Dynamics

, Volume 71, Issue 1–2, pp 291–312 | Cite as

Nonlinear vibrations of a beam with time-varying rigidity and mass

  • A. K. AbramianEmail author
  • W. T. van Horssen
  • S. A. Vakulenko
Original Paper


We consider asymptotic solutions for nonlinear beams that can be described by a fourth order hyperbolic equation with an integral nonlinearity and some space and time dependent coefficients. These coefficients can describe varying mass and rigidity perturbations. A two-time scales perturbation method reduces this complicated equation to an infinite-dimensional Hamiltonian system for the Fourier modes. An analysis of this system shows that the corresponding dynamics is quasi-periodic and periodic in time if the coefficients are constant. For non-constant coefficients the dynamics changes significantly. For some special non-constant coefficients the Hamiltonian dynamics can be simplified. We obtain a simpler finite-dimensional system. Numerical simulations show existence of new interesting dynamical effects due to resonances between some Fourier modes. These resonances can lead to large oscillations, even for small nonlinearities. The phase portraits which correspond to these resonance cases will also be presented.


Time-varying mass Beam Internal resonances 



This work is supported by a grant of the Dutch Organization for Scientific Research NWO, by the NATO Collaborative Linkage Grant No. 984143 and by a RFBR grant 10-1-00814.


  1. 1.
    Irschik, H., Holl, H.J.: Mechanics of variable-mass systems—part 1: balance of mass and linear momentum. Appl. Mech. Rev. 57(1–6), 145–160 (2004) CrossRefGoogle Scholar
  2. 2.
    Banks, H.T., Smith, R.C., Wang, Y.: Smart Material Structures: Modeling, Estimation and Control. Masson/Wiley, Paris/Chichester (1996) zbMATHGoogle Scholar
  3. 3.
    Srinath, D.N., Mittal, S.: Optimal aerodynamic design of airfoils in unsteady viscous flows. Comput. Methods Appl. Mech. Eng. 199(29–32), 1976–1991 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cheng, J.-Y., Pedley, T.J., Altringham, J.D.: A continuous dynamic beam model for swimming fish. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 353, 981–997 (1998) CrossRefGoogle Scholar
  5. 5.
    Fiazza, C., Salumäe, T., Listak, M., Kulikovskis, G., Templeton, R., Akanyeti, O., Megill, W., Fiorini, P.: Biomimetric mechanical design for soft-bodied underwater vehicles. In: IEE Oceans Conference, Sydney, Australia (2010) Google Scholar
  6. 6.
    Klosner, J.M., Ghandour, E.: The dynamics of a beam of changing cross section. Polytechnic Inst. of Brooklyn, NY Dept. of Aerospace Engn and Applied Mechanics, Report:AD0675139 (June 1968) Google Scholar
  7. 7.
    Kuiper, G.L., Metrikine, A.V.: Experimental investigation of dynamic stability of a cantilever pipe aspirating fluid. J. Fluids Struct. 24, 541–558 (2008) CrossRefGoogle Scholar
  8. 8.
    Matsumoto, M., Yagi, T., Sakai, S., Ohay, J., Okada, T.: Investigation on steady wind force coefficients of inclined cables and their application to aerodynamics. In: Proceedings of the Fifth International Symposium on Cable Dynamics, Santa Margherita Ligure, Italy, 15–18 September 2003 Google Scholar
  9. 9.
    Abramian, A., Vakulenko, S.: Oscillations of a beam with time varying mass. Nonlinear Dyn. 63(1–2), 135–147 (2010) Google Scholar
  10. 10.
    Alekseenko, S.V., Markovich, D.M., Evseev, A.R.: Rivulet flow of liquid on the outer surface of inclined cylinder. J. Appl. Mech. Tech. Phys. 38(4), 649–653 (1997) CrossRefGoogle Scholar
  11. 11.
    Lurie, K.A.: An Introduction to the Mathematical Theory of Dynamic Material. Springer, Berlin (2007) Google Scholar
  12. 12.
    Suweken, G., van Horssen, W.T.: On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part 2: the beam-like case. J. Sound Vib. 267(5–6), 1007–1027 (2003) CrossRefGoogle Scholar
  13. 13.
    Timoshenko, S.: Theory of Elastic Stability. McGraw-Hill, New York (1936) Google Scholar
  14. 14.
    Poschel, J.: A lecture on the classical KAM-theorem. Proc. Symp. Pure Math. 69, 707–732 (2001). MathSciNetGoogle Scholar
  15. 15.
    Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl. 21, 192–205 (1987) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kuksin, S.B.: Nearly Integrable Infinite Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, vol. 1556. Springer, Berlin (1993) zbMATHGoogle Scholar
  17. 17.
    Kuksin, S.B., Poschel, J.: Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143, 149–179 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bourgain, J.: Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations. Ann. Math. 148, 363–439 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005) zbMATHGoogle Scholar
  20. 20.
    Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46, 1409–1498 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Geng, J., You, J.: KAM tori of Hamiltonian perturbations of 1D linear beam equations. J. Math. Anal. Appl. 277, 104–121 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Boertjens, G.J., van Horssen, W.T.: On interactions of oscillation modes for weakly non-linear undamped elastic beam with an external force. J. Sound Vib. 235, 201–217 (2000) CrossRefGoogle Scholar
  23. 23.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1989) Google Scholar
  24. 24.
    Kauderer, H.: Nichtlineare Mechanik. Springer, Berlin (1958) zbMATHCrossRefGoogle Scholar
  25. 25.
    Van der Burgh, A.H.P., Hortono, B., Abramian, A.K.: A new model for the study of rain-wind-induced vibrations of a simple oscillator. Int. J. Non-Linear Mech. 41, 345–358 (2006) zbMATHCrossRefGoogle Scholar
  26. 26.
    Van Horssen, W.T., Abramian, A.K., Hortono, B.: On the free vibrations of an oscillator with a periodically time-varying mass. J. Sound Vib. 298, 1166–1172 (2006) zbMATHCrossRefGoogle Scholar
  27. 27.
    Körner, T.W.: Fourier Analysis. Cambridge University Press, Cambridge (1988) zbMATHGoogle Scholar
  28. 28.
    Arnold, V.I., Weinstein, A., Vostmann, K.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, Berlin (1997). Appendix 8: Theory of perturbations of conditionally periodic motion, and Kolmogorov’s theorem Google Scholar
  29. 29.
    Bambusi, D., Berti, M.: A Birkhoff–Lewis type theorem for some Hamiltonian PDEs. SIAM J. Math. Anal. 37, 83–102 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Krylov, N.M., Bogolyubov, N.N.: Methodes approchees de la mecanique non-lineaire dans leurs application. La perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant. Kiev (1935) Google Scholar
  31. 31.
    Mitropol’skii, Yu.A.: An Averaging Method in Nonlinear Mechanics. Naukova Dumka, Kiev (1971) (in Russian) Google Scholar
  32. 32.
    Dalezkii, Yu.L., Krein, S.G.: Stability of Solutions of Differential Equations in Banach Spaces. Nauka, Moscow (1970) Google Scholar
  33. 33.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983) zbMATHGoogle Scholar
  34. 34.
    Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002) zbMATHCrossRefGoogle Scholar
  35. 35.
    Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos, 2nd edn. Wiley, New York (2002) zbMATHGoogle Scholar
  36. 36.
    Tanner, G., Sondergaard, N.: Wave chaos in acoustics and elasticity. J. Phys. A, Math. Theor. 40(50), R443–R509 (2007) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • A. K. Abramian
    • 1
    Email author
  • W. T. van Horssen
    • 2
  • S. A. Vakulenko
    • 1
  1. 1.Institute of Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Department of Applied Mathematical Analysis, Faculty EEMCSDelft University of TechnologyDelftNetherlands

Personalised recommendations