Nonlinear Dynamics

, Volume 71, Issue 1–2, pp 1–12 | Cite as

Similarity reductions and exact solutions of generalized Bretherton equation with time-dependent coefficients

Original Paper

Abstract

In this paper, we apply Lie-group formalism to the generalized Bretherton equation with variable coefficients utt+α(t)uxx+β(t)uxxxx+δ(t)um+θ(t)un=0, to investigate the symmetries. We derive the infinitesimals and the admissible forms of the coefficients that admit the classical symmetry group. The ordinary differential equations deduced from the optimal system of subalgebras are further studied and some exact solutions are obtained.

Keywords

Generalized Bretherton equation Lie classical method Exact solutions 

References

  1. 1.
    Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transform. SIAM, Philadelphia (1981) MATHCrossRefGoogle Scholar
  2. 2.
    Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Wazwaz, A.M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. Math. Comput. 154, 713–723 (2004) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    El-Wakil, S.A., Abdou, M.A.: New exact travelling wave solutions using modified extended tanh-function method. Chaos Solitons Fractals 31, 840–852 (2007) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Wazwaz, A.M.: The extended tanh method for new soliton solutions for many forms of the fifth-order KdV equations. Appl. Math. Comput. 184, 1002–1014 (2007) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Wazwaz, A.M.: A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bekir, A.: New solitons and periodic wave solutions for some nonlinear physical models by using sine-cosine method. Phys. Scr. 77, 501–504 (2008) CrossRefGoogle Scholar
  8. 8.
    Wazwaz, A.M.: The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves. Appl. Math. Comput. 201, 489–503 (2008) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method. Appl. Math. Comput. 190, 633–640 (2007) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Wang, M.L.: Exact solutions for a compound KdV–Burgers equation. Phys. Lett. A 213, 279–287 (1996) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Dai, C.Q., Zhang, J.F.: Jacobian elliptic function method for nonlinear differential-difference equations. Chaos Solitons Fractals 27, 1042–1049 (2006) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Fan, E., Zhang, J.: Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 305, 383–392 (2002) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Abdou, M.A.: The extended F-expansion method and its application for a class of nonlinear evolution equations. Chaos Solitons Fractals 31, 95–104 (2007) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Zhang, J.L., Wang, M.L., Wang, Y.M., Fang, Z.D.: The improved F-expansion method and its applications. Phys. Lett. A 350, 103–109 (2006) MATHCrossRefGoogle Scholar
  16. 16.
    Ganji, D.D., Sadighi, A.: Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations. Int. J. Nonlinear Sci. Numer. Simul. 7, 411–418 (2006) CrossRefGoogle Scholar
  17. 17.
    Ozis, T., Yildirim, A.: Traveling wave solution of Korteweg–de Vries equation using He’s homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 8, 239–242 (2007) Google Scholar
  18. 18.
    He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20, 1141–1199 (2006) MATHCrossRefGoogle Scholar
  19. 19.
    He, J.H., Wu, X.H.: Construction of solitary solution and compaction-like solution by variational iteration method. Chaos Solitons Fractals 29, 108–113 (2006) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Liu, H., Li, J., Liu, L.: Painléve analysis, Lie symmetries and exact solutions for the time-dependent coefficients Gardner equation. Nonlinear Dyn. 59, 497–502 (2010) MATHCrossRefGoogle Scholar
  21. 21.
    Khalique, C.M., Biswas, A.: Solitons in plasmas: a Lie symmetry approach. Int. J. Theor. Phys. 48, 3110–3113 (2009) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Singh, K., Gupta, R.K.: Lie symmetries and exact solutions of a new generalized Hirota–Satsuma coupled KdV system with variable coefficients. Int. J. Eng. Sci. 44, 241–255 (2006) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Gupta, R.K., Singh, K.: Symmetry analysis and some exact solutions of cylindrically symmetric null fields in General Relativity. Commun. Nonlinear Sci. Numer. Simul. 16, 4189–4196 (2011) MATHCrossRefGoogle Scholar
  24. 24.
    Zhang, Y., Song, Y., Ge, J., Wei, W.: Exact solutions and Painléve analysis of a new (2+1)-dimensional KdV equation. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0228-7 Google Scholar
  25. 25.
    Romeiras, F.J.: Exact travelling wave solutions of the generalized Bretherton equation. Appl. Math. Comput. 215, 1791–1805 (2009) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Sassaman, R., Biswas, A.: Topological and non-topological solitons of the generalized Klein–Gordon equations. Appl. Math. Comput. 215, 212–220 (2009) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Elgarayahi, A.: New periodic wave solutions for the shallow water equations and the generalized Klein–Gordon equation. Commun. Nonlinear Sci. Numer. Simul. 13, 877–888 (2008) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Bretherton, F.P.: Resonant interactions between waves: the case of discrete oscillations. J. Fluid Mech. 20, 457–479 (1964) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York (1991) MATHCrossRefGoogle Scholar
  30. 30.
    Dodd, R.K.: Solitons Nonlinear Wave Equations. Academic Press, London (1982) MATHGoogle Scholar
  31. 31.
    Liu, S., Fu, Z., Liu, S.: Exact solutions to sine-Gordon type equations. Phys. Lett. A 351, 59–63 (2006) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Jeffrey, A., Mohamad, M.N.: Exact solutions to KdV–Burger’s equation. Wave Motion 14, 369–375 (1991) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Levandosky, S.P.: Decay estimates for fourth order wave equations. J. Differ. Equ. 143, 360–413 (1998) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Levandosky, S.P.: Stability and instability of fourth-order solitary waves. J. Dyn. Differ. Equ. 10, 151–188 (1998) MathSciNetCrossRefGoogle Scholar
  35. 35.
    Levandosky, S.P., Strauss, W.A.: Time decay for the nonlinear beam equation. Methods Appl. Anal. 7, 479–488 (2000) MathSciNetMATHGoogle Scholar
  36. 36.
    Lie, S.: On integration of a class of linear partial differential equations by means of definite integrals. Arch. Math. 6, 328–368 (1881) (Translation by N.H. Ibragimov) MATHGoogle Scholar
  37. 37.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Graduate Texts Math., vol. 107. Springer, New York (1993) MATHCrossRefGoogle Scholar
  38. 38.
    Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, New York (1974) MATHCrossRefGoogle Scholar
  39. 39.
    Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.School of Mathematics and Computer ApplicationsThapar UniversityPatialaIndia
  2. 2.Department of MathematicsD.A.V. College for WomenFerozepur CanttIndia

Personalised recommendations