Advertisement

Nonlinear Dynamics

, Volume 70, Issue 3, pp 1969–1976 | Cite as

Precise tracking control of piezoelectric actuators based on a hysteresis observer

  • D. H. Ji
  • J. H. Koo
  • W. J. Yoo
  • Ju H. ParkEmail author
Original Paper

Abstract

In this paper, a precise tracking control method for piezoelectric actuators based on a hysteresis observer is considered. A nonlinear observer to estimate the hysteretic nonlinearity in the piezoelectric actuator is designed, and then the hysteretic nonlinearity is compensated for by a feedforward control. The proposed observer is easy to design and has better performance compared to the previous work presented in the literature. A feedback controller is also designed to track reference signals. A numerical simulation is presented to verify the method proposed.

Keywords

Piezoelectric actuator Nonlinear observer Hysteresis 

Notes

Acknowledgements

The work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2010-0009373).

References

  1. 1.
    Zhou, Q., Shi, P., Lu, J., Xu, S.: Adaptive output feedback fuzzy tracking control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 19, 972–982 (2011) CrossRefGoogle Scholar
  2. 2.
    Zhou, Q., Shi, P., Lu, J., Xu, S.: Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. (2012). doi: 10.1109/TSMCB.2012.2196432 Google Scholar
  3. 3.
    Li, H., Wu, L., Si, Y., Gao, H.: Reference output tracking control for a flexible air-breathing hypersonic vehicle via output feedback. Optim. Control Appl. Methods (2011). doi: 10.1002/oca.1008 Google Scholar
  4. 4.
    Li, H., Wu, L., Si, Y., Gao, H.: Multi-objective output tracking control of an air-breathing hypersonic vehicle. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 224, 647–667 (2010) CrossRefGoogle Scholar
  5. 5.
    Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Pontes, B.R., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a MEMS comb-drive actuator. Nonlinear Dyn. (2012). doi: 10.1007/s11071-012-0390-6 Google Scholar
  6. 6.
    Zaitsev, S., Gottlieb, O., Buks, E.: Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity. Nonlinear Dyn. (2012). doi: 10.1007/s11071-012-0371-9 Google Scholar
  7. 7.
    Tan, K.K., Putra, A.S.: Piezo stack actuation control system for sperm injection. Proc. SPIE Int. Soc. Opt. Eng. 6048, 604800 (2005) Google Scholar
  8. 8.
    Cuttiono, J.F., Miller, J., Schinstock, D.E.: Performance optimization of a fast tool servo for single-point diamond turning machines. IEEE/ASME Trans. Mechatron. 4, 169–179 (1999) CrossRefGoogle Scholar
  9. 9.
    Caruso, G., Galeani, S., Menini, L.: Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators. Simul. Model. Pract. Theory 11, 403–419 (2003) CrossRefGoogle Scholar
  10. 10.
    Bertotti, G.: Dynamic generalization of the scalar Preisach model of hysteresis. IEEE Trans. Magn. 28, 2599–2601 (1992) CrossRefGoogle Scholar
  11. 11.
    Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Applied Mathematical Science. Springer, New York (1996) zbMATHCrossRefGoogle Scholar
  12. 12.
    Kuhnen, K.: Identification and compensation of complex hysteretic nonlinearities: a modified Prandtl–Ishlinskii approach. Eur. J. Control 9, 419–421 (2003) CrossRefGoogle Scholar
  13. 13.
    Iyer, R.V., Tan, X., Krishnaprasad, P.S.: Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators. IEEE Trans. Autom. Control 50, 798–810 (2005) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Janaideh, M.A., Rakheja, S., Mao, J., Su, C.Y.: Inverse generalized asymmetric Prandtl-Ishliskii model for compensation of hysteresis nonlinearities in smart actuator. In: Proc. IEEE Conf. Networking, Sensing and Control, Okayama, Japan, pp. 834–839 (2009). Art. no. 4919388 Google Scholar
  15. 15.
    Ge, P., Jouaneh, M.: Tracking control for a piezoceramic actuator. IEEE Trans. Control Syst. Technol. 4, 209–216 (1996) CrossRefGoogle Scholar
  16. 16.
    Adriaens, H., Dekoning, W.L., Banning, R.: Modeling piezoelectric actuators. IEEE/ASME Trans. Mechatron. 5, 331–341 (2000) CrossRefGoogle Scholar
  17. 17.
    Lin, C.J., Yang, S.R.: Precise positioning of piezo-actuated stages using hysteresis-observer based control. IEEE/ASME Trans. Mechatron. 16, 417–426 (2006) Google Scholar
  18. 18.
    Ji, D.H., Jeong, S.C., Park, J.H., Won, S.C.: Robust adaptive backstepping synchronization for a class of uncertain chaotic systems using fuzzy disturbance observer. Nonlinear Dyn. 69, 1125–1136 (2012) CrossRefGoogle Scholar
  19. 19.
    Li, Y., Tong, S., Li, Y.: Observer-based adaptive fuzzy backstepping dynamic surface control design and stability analysis for MIMO stochastic nonlinear systems. Nonlinear Dyn. 69, 1333–1349 (2012) CrossRefGoogle Scholar
  20. 20.
    Driessen, B.J., Duggirala, V.M.: Globally asymptotic and locally exponential tracking observer/controller for a relatively large class of systems with hysteresis. J. Intell. Robot. Syst., Theory Appl. 50, 207–215 (2007) CrossRefGoogle Scholar
  21. 21.
    Driessen, B.J., Kondreddi, S.: Tracking observer/controller for a relatively large class of systems with hysteresis and without velocity measurement. Syst. Control Lett. 58, 26–30 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Morgan, A.P., Narendra, K.S.: On the stability of nonautonomous differential equations \(\dot{x}=[A+B(t)]x\) with skew symmetric matrix B(t). SIAM J. Control Optim. 15, 163–176 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Khalil, H.: Nonlinear Systems, 2nd edn. Prentice Hall, Upper Saddle River (1996) Google Scholar
  24. 24.
    Daly, J.M., Wang, D.W.L.: Output feedback sliding mode control in the presence of unknown disturbances. Syst. Control Lett. 58, 188–193 (2009) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • D. H. Ji
    • 1
  • J. H. Koo
    • 2
  • W. J. Yoo
    • 1
  • Ju H. Park
    • 3
    Email author
  1. 1.Mobile communication Division, Digital Media and CommunicationsSamsung Electronics, Co. Ltd.Gyeonggi-doKorea
  2. 2.Research & Development DivisionHyundai Motor GroupYong-inRepublic of Korea
  3. 3.Nonlinear Dynamics Group, Department of Electrical EngineeringYeungnam UniversityKyongsanRepublic of Korea

Personalised recommendations