Nonlinear Dynamics

, Volume 70, Issue 3, pp 1931–1949 | Cite as

An upper bound for validity limits of asymptotic analytical approaches based on normal form theory

  • Claude-Henri Lamarque
  • Cyril Touzé
  • Olivier Thomas
Original Paper


Perturbation methods are routinely used in all fields of applied mathematics where analytical solutions for nonlinear dynamical systems are searched. Among them, normal form theory provides a reliable method for systematically simplifying dynamical systems via nonlinear change of coordinates, and is also used in a mechanical context to define Nonlinear Normal Modes (NNMs). The main recognized drawback of perturbation methods is the absence of a criterion establishing their range of validity in terms of amplitude. In this paper, we propose a method to obtain upper bounds for amplitudes of changes of variables in normal form transformations. The criterion is tested on simple mechanical systems with one and two degrees-of-freedom, and for complex as well as real normal form. Its behavior with increasing order in the normal transform is established, and comparisons are drawn between exact solutions and normal form computations for increasing levels of amplitudes. The results clearly establish that the criterion gives an upper bound for validity limit of normal transforms.


Normal form theory Upper bound of validity limit Perturbation methods Nonlinear Normal Modes 


  1. 1.
    Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste. Gauthiers-Villars, Paris (1892) Google Scholar
  2. 2.
    Sanders, J.A., Verhulst, F., Murdock, S.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Springer, Berlin (2007) MATHGoogle Scholar
  3. 3.
    Gutzwiller, M.C.: Moon–Earth–Sun: the oldest three-body problem. Rev. Mod. Phys. 70, 589–639 (1998) CrossRefGoogle Scholar
  4. 4.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979) MATHGoogle Scholar
  5. 5.
    Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computational and Experimental Methods. Wiley Series in Nonlinear Science. Wiley, New York (2000) MATHGoogle Scholar
  6. 6.
    Nayfeh, A.H.: Method of Normal Forms. Wiley, New York (1993) MATHGoogle Scholar
  7. 7.
    Dulac, H.: Solutions d’un système d’équations différentielles dans le voisinage de valeurs singulières. Bull. Soc. Math. Fr. 40, 324–383 (1912) MathSciNetMATHGoogle Scholar
  8. 8.
    Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory and Applications. World Scientific, Singapore (1992) MATHGoogle Scholar
  9. 9.
    Elphick, C., Tirapegui, E., Brachet, M.E., Coullet, P., Iooss, G.: A simple global characterization for normal forms of singular vector fields. Physica D 29, 95–127 (1987) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Iooss, G.: Global characterization of the normal form for a vector field near a closed orbit. J. Differ. Equ. 76, 47–76 (1988) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983) MATHGoogle Scholar
  12. 12.
    Carr, J.: Applications of Center Manifold Theory. Applied Mathematical Sciences, vol. 35. Springer, New York (1981) CrossRefGoogle Scholar
  13. 13.
    Mielke, A.: Hamiltonian and Lagrangian Flows on Center Manifolds: With Applications to Elliptic Variational Problems. Lecture Notes in Mathematics, vol. 1489. Springer, Berlin (1991) MATHGoogle Scholar
  14. 14.
    Jézéquel, L., Lamarque, C.-H.: Analysis of nonlinear structural vibrations by normal form theory. J. Sound Vib. 149(3), 429–459 (1991) CrossRefGoogle Scholar
  15. 15.
    Lamarque, C.-H.: Contribution à la Modélisation et à l’identification des Systèmes Mécaniques Non-Linéaires, Thèse de Doctorat de l’Ecole Centrale de Lyon, Spécialité Mécanique, numéro d’ordre 92–32 (1992) Google Scholar
  16. 16.
    Brjuno, A.D.: Analytical forms of differential equations. Tr. Mosk. Mat. Obŝ. 25, 119–262 (1971) MathSciNetGoogle Scholar
  17. 17.
    Brjuno, A.D.: Analytical forms of differential equations. Tr. Mosk. Mat. Obŝ. 25, 199–299 (1972) MathSciNetGoogle Scholar
  18. 18.
    Yu, P.: Computation of normal forms via a perturbation technique. J. Sound Vib. 211(1), 19–38 (1998) MATHCrossRefGoogle Scholar
  19. 19.
    Zhang, W., Huseyin, K.: On the computation of the coefficients associated with high order normal forms. J. Sound Vib. 232(3), 525–540 (2000) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Neild, S.A., Wagg, D.J.: Applying the method of normal forms to second-order nonlinear vibration problem. Proc. R. Soc. A, Math. Phys. Eng. Sci. 467, 1141–1163 (2011) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Coullet, P.H., Spiegel, E.A.: Amplitude equation for systems with competing instabilities. SIAM J. Appl. Math. 43(4), 776–821 (1985) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Marsden, J.E., Mc Cracken, M.: The Hopf Bifurcation and Its Applications. Applied Mathematical Sciences, vol. 19. Springer, New York Heidelberg Berlin (1976). MATHCrossRefGoogle Scholar
  23. 23.
    Golubitsky, M.S., Schaeffer, D.: Singularities and Groups in Bifurcation Theory, vol. I. Appl. Math. Sci., vol. 51. Springer, New York (1985) Google Scholar
  24. 24.
    Golubitsky, M.S., Stewart, I., Schaeffer, D.: Singularities and Groups in Bifurcation Theory, vol. II. Appl. Math. Sci., vol. 69. Springer, New York (1988) CrossRefGoogle Scholar
  25. 25.
    Touzé, C., Thomas, O., Chaigne, A.: Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. J. Sound Vib. 273(1–2), 77–101 (2004) CrossRefGoogle Scholar
  26. 26.
    Touzé, C., Amabili, M.: Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures. J. Sound Vib. 298(4–5), 958–981 (2006) CrossRefGoogle Scholar
  27. 27.
    Amabili, M., Touzé, C.: Reduced-order models for non-linear vibrations of fluid-filled circular cylindrical shells: comparison of POD and asymptotic non-linear normal modes methods. J. Fluids Struct. 23(6), 885–903 (2007) CrossRefGoogle Scholar
  28. 28.
    Touzé, C., Amabili, M., Thomas, O.: Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. Comput. Methods Appl. Mech. Eng. 197(21–24), 2030–2045 (2008) MATHCrossRefGoogle Scholar
  29. 29.
    Karkar, S., Cochelin, B., Vergez, C., Thomas, O., Lazarus, A.: USER GUIDE MANLAB 2.0 (2010).
  30. 30.
    Cochelin, B., Vergez, C.: A high order purely-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324, 243–262 (2009) CrossRefGoogle Scholar
  31. 31.
    Lazarus, A., Thomas, O.: A harmonic-based method for computing the stability of periodic solutions of dynamical systems. C. R., Méc. 338, 510–517 (2010) MATHCrossRefGoogle Scholar
  32. 32.
    Shaw, S.W., Pierre, C.: Non-linear normal modes and invariant manifolds. J. Sound Vib. 150(1), 170–173 (1991) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Pellicano, F., Mastroddi, F.: Applicability conditions of a non-linear superposition technique. J. Sound Vib. 200(1), 3–14 (1997) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Claude-Henri Lamarque
    • 1
  • Cyril Touzé
    • 2
  • Olivier Thomas
    • 3
  1. 1.Université de LyonENTPE/DGCB/FRE CNRS 3237Vaulx-en-Velin CedexFrance
  2. 2.Unité de Mécanique (UME)ENSTA—ParisTechParisFrance
  3. 3.Structural Mechanics and Coupled Systems LaboratoryCNAMParisFrance

Personalised recommendations