Nonlinear Dynamics

, Volume 70, Issue 3, pp 1791–1794 | Cite as

A novel approach for designing substitution-boxes based on nonlinear chaotic algorithm

  • Iqtadar Hussain
  • Tariq Shah
  • Muhammad Asif Gondal
Original Paper


A substitution box (S-box) plays a central role in cryptographic algorithms. In this paper, an efficient method for designing S-boxes based on chaotic maps is proposed. The proposed method is based on the NCA (nonlinear chaotic algorithm) chaotic maps. The S-box so constructed has very optimal nonlinearity, bit independence criterion (BIC), strict avalanche criterion (SAC), differential and linear approximation probabilities. The proposed S-box is more secure against differential and linear cryptanalysis compared to recently proposed chaotic S-boxes.


S-box Chaos LP DP Nonlinearity BIC 


  1. 1.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: A projective general linear group based algorithm for the construction of substitution box for block ciphers. Neural Comput. Appl. (2012). doi: 10.1007/s00521-012-0870-0
  2. 2.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: Analysis of S-box in image encryption using root mean square error method. Z. Naturforsch. A 67a, 327–332 (2012) CrossRefGoogle Scholar
  3. 3.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: Generalized majority logic criterion to analyze the statistical strength of S-boxes. Z. Naturforsch. A 67a, 282–288 (2012) CrossRefGoogle Scholar
  4. 4.
    Hussain, I., Shah, T., Mahmood, H.: A group theoretic approach to construct cryptographically strong substitution boxes. Neural Comput. Appl. (2012). doi: 10.1007/s00521-012-0914-5
  5. 5.
    Hussain, I., Shah, T., Gondal, M.A.: Image encryption algorithm based on PGL(2,GF(28)) S-boxes and TD-ERCS chaotic sequence. Nonlinear Dyn. (2012). doi: 10.1007/s11071-012-0440-0
  6. 6.
    Hussain, I., Shah, T.: S8 affine power affine S-boxes and their application. Neural Comput. Appl. (2012). doi: 10.1007/s00521-012-1036-9
  7. 7.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: Construction of S8 Lui J S-boxes and their application. Comput. Math. Appl. (2012). doi: 10.1016/j.camwa.2012.05.017
  8. 8.
    Hussain, I., Shah, T., Gondal, M.A.: An efficient image encryption algorithm based on S8 S-box transformation and NCA map. Opt. Commun. (2012). doi: 10.1016/j.optcom.2012.06.011
  9. 9.
    Hussain, I., Shah, T., Gondal, M.A., Wang, Y.: Analyses of SKIPJACK S-box. World Appl. Sci. J. 13(11), 2385–2388 (2011) Google Scholar
  10. 10.
    Hussain, I., Shah, T., Gondal, M.A., Khan, W.A.: Construction of cryptographically strong 8×8 S-boxes. World Appl. Sci. J. 13(11), 2389–2395 (2011) Google Scholar
  11. 11.
    Hussain, I., Shah, T., Gondal, M.A., Khan, W.A., Khan, M.: Construction of new S-box using a linear fractional transformation. World Appl. Sci. J. 14(12), 1779–1785 (2011) Google Scholar
  12. 12.
    Shah, T., Hussain, I., Gondal, M.A., Mahmood, H.: Statistical analysis of S-box in image encryption applications based on majority logic criterion. Int. J. Phys. Sci. 6(16), 4110–4127 (2011) Google Scholar
  13. 13.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: Some analysis of S-Box based on residue of prime number. Proc. Pak. Acad. Sci. 48(2), 111–115 (2011) MathSciNetGoogle Scholar
  14. 14.
    Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: A new algorithm to construct secure keys for AES. Int. J. Contemp. Math. Sci. 5(26), 1263–1270 (2010) MathSciNetMATHGoogle Scholar
  15. 15.
    Hussain, I., Shah, T., Mahmood, H., Afzal, M.: Comparative analysis of S-boxes based on graphical SAC. Int. J. Comput. Appl. 2(5), 975–8887 (2010) Google Scholar
  16. 16.
    Hussain, I., Shah, T., Aslam, K.S.: Graphical Sac analysis of S8 APA S-box. Adv. Algebra 3(1), 57–62 (2010) Google Scholar
  17. 17.
    Daemen, J., Rijmen, V.: The Design of Rijndael-AES: The Advanced Encryption Standard. Springer, Berlin (2002) MATHGoogle Scholar
  18. 18.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Matsui, M.: Linear cryptanalysis method of DES cipher. In: Advances in Cryptology, Proc. Eurocrypt’93. LNCS, vol. 765, pp. 386–397. Springer, Berlin (1994) Google Scholar
  20. 20.
    Nyberg, K.: Differentially uniform mappings for cryptography. In: Advances in Cryptology, Proc. Eurocrypt’93. LNCS, vol. 765, pp. 55–64. Springer, Berlin (1994) Google Scholar
  21. 21.
    Jakimoski, G., Kocarev, L.: Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. I 48(2), 163–169 (2001) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 15(10), 3119–3151 (2005) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Peitegen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science, 2nd edn. Springer, Berlin (2004) Google Scholar
  24. 24.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(8), 2129–2151 (2006) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Chen, G., Chen, Y., Liao, X.: An extended method for obtaining S-boxes based on three-dimensional chaotic baker maps. Chaos Solitons Fractals 31, 571–579 (2007) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Tang, G., Liao, X., Chen, Y.: A novel method for designing S-boxes based on chaotic maps. Chaos Solitons Fractals 23, 413–419 (2005) MATHCrossRefGoogle Scholar
  27. 27.
    Asim, M., Jeoti, V.: Efficient and simple method for designing chaotic S-boxes. ETRI J. 30, 170–172 (2008) CrossRefGoogle Scholar
  28. 28.
    Kohda, T., Tsuneda, A.: Statistics of chaotic binary sequences. IEEE Trans. Inf. Theory 43, 104–120 (1997) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Sheng, L., Sun, K., Li, C.: Study of a discrete chaotic system based on tangent-delay for elliptic reflecting cavity and its properties. Acta Phys. Sin. 53, 2871–2876 (2004) Google Scholar
  30. 30.
    Sheng, L., Cao, L., Sun, K.: Pseudo-random number generator based on NCAS chaos and its statistic characteristics analysis. Acta Phys. Sin. 54, 4031–4037 (2005) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Iqtadar Hussain
    • 1
  • Tariq Shah
    • 1
  • Muhammad Asif Gondal
    • 2
  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Sciences and HumanitiesNational University of Computer and Emerging SciencesIslamabadPakistan

Personalised recommendations