Nonlinear Dynamics

, Volume 70, Issue 2, pp 1619–1632 | Cite as

Stabilization of projection-based reduced order models of the Navier–Stokes

Original Paper

Abstract

A new method of stabilizing low-order, proper orthogonal decomposition based reduced-order models of the Navier–Stokes equations is proposed. Unlike traditional approaches, this method does not rely on empirical turbulence modeling or modification of the Navier–Stokes equations. It provides spatial basis functions different from the usual proper orthogonal decomposition basis function in that, in addition to optimally representing the solution, the new proposed basis functions also provide stable reduced-order models. The proposed approach is illustrated with two test cases: two-dimensional flow inside a square lid-driven cavity and a two-dimensional mixing layer.

Keywords

Model order reduction Proper orthogonal decomposition Turbulence Stabilization Reduced order modeling Navier–Stokes Lid driven cavity Mixing layer Turbulence modeling 

Notes

Acknowledgements

The authors would like to thank Dr. Bernd Noack at the Institute PPrime in Poitiers, France for his invaluable comments and making available to us the mixing layer data set. The first author is particularly thankful for the financial support provided by Dr. Noack during his visit to the PPrime institute.

The authors wish to acknowledge the Natural Science and Engineering Research Council of Canada (NSERC) and its associated Canada Graduate Scholarship (CGS) for their financial support.

References

  1. 1.
    Barone, M.F., Kalashnikova, I., Segalman, D.J., Thornquist, H.K.: Stable Galerkin reduced order models for linearized compressible flow. J. Comput. Phys. 228(6), 1932 (2009) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Amsallem, D., Farhat, C.: Stabilization of projection-based reduced-order models. Int. J. Numer. Methods Eng. (2012) Google Scholar
  3. 3.
    Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002) CrossRefGoogle Scholar
  4. 4.
    Rowley, C.W.: Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15, 997 (2005) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. Prentice Hall, New York (1996) MATHGoogle Scholar
  6. 6.
    Schilders, W., Van Der Vorst, H., Rommes, J.: Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry. Springer, Berlin (2008) MATHCrossRefGoogle Scholar
  7. 7.
    Moin, P., Mahesh, K.: Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539 (1998) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Noack, B., Morzynski, M., Tadmor, G.: Reduced-Order Modelling for Flow Control. CISM International Centre for Mechanical Sciences. Springer, Berlin (2011) MATHCrossRefGoogle Scholar
  9. 9.
    Cordier, L., Noack, B., Daviller, G., Delvile, J., Lehnasch, G., Tissot, G., Balajewicz, M., Niven, R.: Control-oriented model identification strategy. Exp. Fluids (2012, submitted) Google Scholar
  10. 10.
    Cazemier, W., Verstappen, R.W.C.P., Veldman, A.E.P.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10(7), 1685 (1998) CrossRefGoogle Scholar
  11. 11.
    Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996) MATHCrossRefGoogle Scholar
  12. 12.
    Noack, B., Schlegel, M., Morzynski, M., Tadmor, G.: System reduction strategy for Galerkin models of fluid flows. Int. J. Numer. Methods Fluids 63, 231 (2010) MathSciNetMATHGoogle Scholar
  13. 13.
    Rempfer, D.: On low-dimensional Galerkin models for fluid flow. Theor. Comput. Fluid Dyn. 14, 75 (2000) MATHCrossRefGoogle Scholar
  14. 14.
    Rowley, C.W., Colonius, T., Murray, R.M.: Model reduction for compressible flows using POD and Galerkin projection. Physica D 189, 115 (2004) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Smith, T., Moehlis, J., Holmes, P.: Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dyn. 41(1–3), 275 (2005) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Tadmor, G., Lehmann, O., Noack, B.R., Cordier, L., Delville, J., Bonnet, J.P., Morzynski, M.: Reduced order models for closed-loop wake control. Philos. Trans. R. Soc. Lond. A 369, 1513 (2011) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Sirisup, S., Karniadakis, G.E., Xiu, D., Kevrekidis, I.G.: Equation-free/Galerkin-free POD-assisted computation of incompressible flows. J. Comput. Phys. 207(2), 568 (2005) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Sirisup, S., Karniadakis, G.: A spectral viscosity method for correcting the long-term behavior of POD models. J. Comput. Phys. 194(1), 92 (2004) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803 (2008) CrossRefGoogle Scholar
  20. 20.
    Ladyzhenskaia, O., Silverman, R., Chu, J.: The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach, New York (1969) Google Scholar
  21. 21.
    Noack, B., Eckelmann, H.: A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297 (1994) MATHCrossRefGoogle Scholar
  22. 22.
    Joseph, D.: Stability of fluid motions. I, II. Tech. rep. (1976) Google Scholar
  23. 23.
    Rowley, C.W., Mezic, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115 (2009) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Schmid, P.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656(1), 5 (2010) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997) MATHCrossRefGoogle Scholar
  26. 26.
    Sirovich, L.: Turbulence and the dynamics of coherent structures, part I: coherent structures. Q. Appl. Math. XLV, 561 (1987) MathSciNetGoogle Scholar
  27. 27.
    Bergmann, M., Bruneau, C., Iollo, A.: Enablers for robust POD models. J. Comput. Phys. 228(2), 516 (2009) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Noack, B.R., Niven, R.K.: Maximum-entropy closure for a Galerkin model of an incompressible periodic wake. J. Fluid Mech. 700, 187 (2012) MATHCrossRefGoogle Scholar
  29. 29.
    Noack, B.R., Schlegel, M., Morzynski, M., Tadmor, G.: System reduction strategy for Galerkin models of fluid flows. Int. J. Numer. Methods Fluids 63(2), 231 (2010) MathSciNetMATHGoogle Scholar
  30. 30.
    Noack, B.R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzynski, M., Comte, P., Tadmor, G.: A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilib. Thermodyn. 33, 103 (2008) MATHGoogle Scholar
  31. 31.
    Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Two-level discretizations of nonlinear closure models for proper orthogonal decomposition. J. Comput. Phys. 230(1), 126 (2011) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Couplet, M., Basdevant, C., Sagaut, P.: Calibrated reduced-order POD–Galerkin system for fluid flow modelling. J. Comput. Phys. 207(1), 192 (2005) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Rapun, M.L., Vega, J.M.: Reduced order models based on local POD plus Galerkin projection. J. Comput. Phys. 229(8), 3046 (2010) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press, Cambridge (1972) Google Scholar
  35. 35.
    Mathieu, J., Scott, J.: An Introduction to Turbulent Flow. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  36. 36.
    Davidson, P.A.: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2004) MATHGoogle Scholar
  37. 37.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001) MATHGoogle Scholar
  38. 38.
    Shankar, P.N., Deshpande, M.D.: Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32, 93 (2000) MathSciNetCrossRefGoogle Scholar
  39. 39.
    Terragni, F., Valero, E., Vega, J.M.: Local POD plus Galerkin projection in the unsteady lid-driven cavity problem. SIAM J. Sci. Comput. 33(6), 3538 (2011) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Balajewicz, M.: A new approach to model order reduction of the Navier–Stokes. Ph.D. thesis, Duke Univeristy (2012) Google Scholar
  41. 41.
    Daviller, W.: Numerical study of temperature effects in single and coaxial jets. Ph.D. thesis, École nationale supéieure de mécanique et d’aérotechnique (2010) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA

Personalised recommendations