Nonlinear Dynamics

, Volume 70, Issue 2, pp 1107–1115 | Cite as

Cluster synchronization analysis of complex dynamical networks by input-to-state stability

  • Junchan Zhao
  • M. A. Aziz-Alaoui
  • Cyrille Bertelle
Original Paper

Abstract

Cluster synchronization is an interesting issue in complex dynamical networks with community structure. In this paper, we study cluster synchronization of complex networks with non-identical systems by input-to-state stability. Some sufficient conditions that ensure cluster synchronization of complex networks are provided. We show that the cluster synchronization is difficult to achieve if there are some links among different clusters. The analysis is then extended to the case where the outer coupling strengths are adaptive. Finally, numerical simulations are given to validate our theoretical analysis.

Keywords

Complex network Cluster synchronization Input-to-state stability Adaptive control 

Notes

Acknowledgements

This work was jointly supported by Région Haute-Normandie France and FEDER-RISC, the National Natural Science Foundation of China under Grant Nos. 11172215, 11071280, 50739003, the Youth Project of Hubei Education Department under Grant Nos. Q20111607, Q20111611, and the Foundation of Wuhan Textile University under Grant No. 113073. The authors wish to thank the reviewers and editor for their valuable comments and suggestions.

References

  1. 1.
    Wu, C.W., Chua, L.O.: Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 42, 430–447 (1995) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 391, 440–442 (1998) CrossRefGoogle Scholar
  3. 3.
    Pecora, L.M., Carroll, T.L.: Master stability function for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998) CrossRefGoogle Scholar
  4. 4.
    Belykh, V.N., Belykh, I.V., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica D 195, 159–187 (2004) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Xiang, L., Zhu, J.: On pinning synchronization of general coupled networks. Nonlinear Dyn. 64, 339–348 (2011) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50, 841–846 (2005) CrossRefGoogle Scholar
  7. 7.
    Zhou, J., Chen, T.: Synchronization in general complex delayed dynamical networks. IEEE Trans. Circuits Syst. I 53, 733–744 (2006) CrossRefGoogle Scholar
  8. 8.
    Aziz-Alaoui, M.A.: Synchronization of chaos. In: Encyclopedia of Mathematical Physics, vol. 5, pp. 213–226. Elsevier, Amsterdam (2006) CrossRefGoogle Scholar
  9. 9.
    Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, J., Lu, J., Wu, X., Zheng, W.: Generalized synchronization of complex dynamical networks via impulsive control. Chaos 19, 043119 (2009) CrossRefGoogle Scholar
  11. 11.
    Ndeffo Mbah, M., Liu, J., Bauch, C., Tekel, Y., Medlock, J., Meyers, L., Galvani, A.: The impact of imitation on vaccination behavior in social contact networks. PLoS Comput. Biol. 8, e1002469 (2012) CrossRefGoogle Scholar
  12. 12.
    Belykh, I., Belykh, V., Nevidin, K., Hasler, M.: Persistent clusters in lattices of coupled nonidentical chaotic systems. Chaos 13, 165–178 (2003) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ma, Z., Liu, Z., Zhang, G.: A new method to realize cluster synchronization in connected chaotic networks. Chaos 16, 023103 (2006) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, L., Lu, J.: Cluster synchronization in a complex dynamical network with two nonidentical clusters. J. Syst. Sci. Complex. 21, 20–33 (2008) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lu, W., Liu, B., Chen, T.: Cluster synchronization in networks of distinct groups of maps. Eur. Phys. J. B 77, 257–264 (2010) CrossRefGoogle Scholar
  16. 16.
    Wang, J., Feng, J., Xu, C., Zhao, Y.: Cluster synchronization of nonlinearly-coupled complex networks with nonidentical nodes and asymmetrical coupling matrix. Nonlinear Dyn. 67, 1635–1646 (2012) MATHCrossRefGoogle Scholar
  17. 17.
    Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34, 435–443 (1989) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Sontag, E.D., Wang, Y.: On characterizations of the input-to-state stability property. Syst. Control Lett. 24, 351–359 (1995) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  20. 20.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976) CrossRefGoogle Scholar
  21. 21.
    Lu, W., Chen, T., Chen, G.: Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay. Physica D 221, 118–134 (2006) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I, Regul. Pap. 54, 1317–1326 (2007) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009) MATHCrossRefGoogle Scholar
  24. 24.
    Zhou, J., Lu, J., Lü, J.: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44, 996–1003 (2008) CrossRefGoogle Scholar
  25. 25.
    Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002) MATHGoogle Scholar
  26. 26.
    Sastry, S., Bodson, M.: Adaptive Control-Stability, Convergence, and Robustness. Prentice Hall, Englewood Cliffs (1989) MATHGoogle Scholar
  27. 27.
    Besançon, G.: Remarks on nonlinear adaptive observer design. Syst. Control Lett. 41, 271–280 (2000) MATHCrossRefGoogle Scholar
  28. 28.
    Pease, M.C.: Method of Matrix Algebra. Academic Press, New York (1965) Google Scholar
  29. 29.
    Bollobás, B.: Modern Graph Theory. Springer, New York (1998) MATHCrossRefGoogle Scholar
  30. 30.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Newman, M.E.J., Watts, D.J.: Scaling and percolation in the small-world network model. Phys. Rev. E 60, 7332 (1999) CrossRefGoogle Scholar
  32. 32.
    Lü, J., Yu, X., Chen, G.: Chaos synchronization of general complex dynamical networks. Physica A 334, 281–302 (2004) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lü, J., Yu, X., Chen, G., Cheng, D.: Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits Syst. I, Regul. Pap. 51, 787–796 (2004) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Junchan Zhao
    • 1
    • 2
  • M. A. Aziz-Alaoui
    • 2
  • Cyrille Bertelle
    • 3
  1. 1.College of Mathematica and Computer ScienceWuhan Textile UniversityWuhanChina
  2. 2.Applied Mathematics LaboratoryUniversity of Le HavreLe Havre CedexFrance
  3. 3.LITISUniversity of Le HavreLe Havre CedexFrance

Personalised recommendations