Nonlinear Dynamics

, Volume 70, Issue 2, pp 1061–1077 | Cite as

Robust H output tracking control for fuzzy networked systems with stochastic sampling and multiplicative noise

  • Shiping Wen
  • Zhigang ZengEmail author
  • Tingwen Huang
Original Paper


In this paper, the problem of robust sampled-data H output tracking control is investigated for a class of fuzzy networked systems with stochastic sampling, multiplicative noise and time-varying norm-bounded uncertainties. For the sake of technical simplicity, only two different sampling periods are considered, their occurrence probabilities are given constants and satisfy Bernoulli distribution, and they can be extended to the case with multiple stochastic sampling periods. By using an input-delay method, the probabilistic system is transformed into a stochastic continuous time-delay system. A new linear matrix inequality(LMI)-based procedure is proposed for designing state-feedback controllers, which would guarantee that the closed-loop networked system with stochastic sampling tracks the output of a given reference model well in the sense of H . Conservatism is reduced by taking the probability into account. Both network-induced delays and packet dropouts have been considered. Finally, an illustrative example is given to show the usefulness and effectiveness of the proposed H output tracking design.


Output tracking control Stochastic sampling Uncertainty Multiplicative noise 



This work is supported by the Natural Science Foundation of China under Grants 60974021 and 61125303, the 973 Program of China under Grant 2011CB710606, the Fund for Distinguished Young Scholars of Hubei Province under Grant 2010CDA081, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant 20100142110021.


  1. 1.
    Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14, 676–697 (2006) CrossRefGoogle Scholar
  2. 2.
    Wang, H., Tanaka, K., Griffin, M.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4, 14–23 (1996) CrossRefGoogle Scholar
  3. 3.
    Gassara, H., El, H., Chaabane, M.: Robust control of T-S fuzzy systems with time-varying delay using new approach. Int. J. Robust Nonlinear Control 20, 1566–1578 (2010) zbMATHCrossRefGoogle Scholar
  4. 4.
    Liu, J., Yue, D.: Asymptotic and robust stability of T-S fuzzy genetic regulatory networks with time-varying delays. Int. J. Robust Nonlinear Control 22, 827–840 (2012) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kuperman, A., Zhong, Q.: Robust control of uncertain nonlinear systems with state delays based on an uncertainty and disturbance estimator. Int. J. Robust Nonlinear Control 21, 1541–1561 (2011) CrossRefGoogle Scholar
  6. 6.
    Li, L., Liu, X.: Stability analysis for T-S fuzzy systems with interval time-varying delays and nonlinear perturbations. Int. J. Robust Nonlinear Control 20, 1622–1636 (2010) zbMATHCrossRefGoogle Scholar
  7. 7.
    Chang, W., Park, J., Joo, Y., Chen, G.: Static output-feedback fuzzy controller for Chen’s chaotic system with uncertainties. Inf. Sci. 151, 227–244 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    de Souza, C., Li, X.: Delay-dependent robust H1 control of uncertain linear state-delayed systems. Automatica 35, 1313–1321 (1999) zbMATHCrossRefGoogle Scholar
  9. 9.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 15, 116–132 (1985) zbMATHGoogle Scholar
  10. 10.
    Qu, Z., Dorsey, J.: Robust tracking control of robots by a linear feedback law. IEEE Trans. Autom. Control 36, 1081–1084 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dawson, D., Qu, Z., Carroll, J.: Tracking control of rigid-link electrically-driven robot manipulations. Int. J. Control 56, 991–1006 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Benvenuti, L., Benedetto, M., Grizzle, J.: Approximate output tracking for nonlinear nonminimum phase systems with an application to flight control. Int. J. Robust Nonlinear Control 4, 397–414 (1994) zbMATHCrossRefGoogle Scholar
  13. 13.
    Liao, F., Wang, J., Yang, G.: Reliable robust flight tracking control: an LMI approach. IEEE Trans. Control Syst. Technol. 10, 76–89 (2002) CrossRefGoogle Scholar
  14. 14.
    Hu, J., Dawson, D., Qian, Y.: Position tracking control of an induction-motor via partial state-feedback. Automatica 31, 989–1000 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Shieh, N., Tung, P., Lin, C.: Robust output tracking control of a linear brushless DC motor with time-varying disturbances. Inst. Electr. Eng. Process. Electr. Power Appl. 149, 39–45 (2002) CrossRefGoogle Scholar
  16. 16.
    Li, D.: Adaptive output feedback control of uncertain nonlinear chaotic systems based on dynamic surface control technique. Nonlinear Dyn. 68, 235–243 (2012) zbMATHCrossRefGoogle Scholar
  17. 17.
    Mousavi, S., Ranjbar-Sahraei, B., Noroozi, N.: Output feedback controller for hysteretic time-delayed MIMO nonlinear systems an H -based indirect adaptive interval type-2 fuzzy approach. Nonlinear Dyn. 68, 63–76 (2012) zbMATHCrossRefGoogle Scholar
  18. 18.
    Kamali, M., Askari, J., Sheikholeslam, F.: An output-feedback adaptive actuator failure compensation controller for systems with unknown state delays. Nonlinear Dyn. 67, 2397–2410 (2012) zbMATHCrossRefGoogle Scholar
  19. 19.
    Lu, C., Hwang, Y.: A model reference robust multiple-surfaces design for tracking control of radial pneumatic motion systems. Nonlinear Dyn. 67, 2585–2597 (2012) CrossRefGoogle Scholar
  20. 20.
    Yang, R., Lu, L., Xie, L.: Robust H 2 and H control of discrete-time systems with polytopic uncertainties via dynamic output feedback. Int. J. Control 78, 1285–1294 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Swarnakar, A., Marquez, H., Chen, T.: Robust stabilization of nonlinear interconnected systems with application to an industrial utility boiler. Control Eng. Pract. 15, 639–654 (2007) CrossRefGoogle Scholar
  22. 22.
    Li, H., Chen, B., Zhou, Q., Lin, C.: Robust exponential stability for delayed uncertain Hopfield neural networks with Markovian jumping parameters. Phys. Lett. A 372, 4996–5003 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Li, H., Chen, B., Zhou, Q., Qian, W.: Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39, 94–102 (2009) CrossRefGoogle Scholar
  24. 24.
    Zhou, Q., Shi, P., Liu, H., Xu, S.: Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. (2012). doi: 10.1109/TSMCB.2012.2196432 Google Scholar
  25. 25.
    Zhou, Q., Shi, P., Lu, J., Xu, S.: Adaptive output feedback fuzzy tracking control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 19, 972–982 (2011) CrossRefGoogle Scholar
  26. 26.
    Li, H., Liu, H., Gao, H., Shi, P.: Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Trans. Fuzzy Syst. 20, 342–357 (2012) CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Yang, G.: Output tracking control for networked control systems with time delay and packet dropout. Int. J. Control 81, 1709–1719 (2008) zbMATHCrossRefGoogle Scholar
  28. 28.
    Wang, Y., Yang, G.: H performance optimization for networked control systems with limited communication channels. J. Control Theory Appl. 8, 99–104 (2010) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhang, D., Yu, L.: H output tracking control for neutral systems with time-varying delay and nonlinear perturbations. Commun. Nonlinear Sci. Numer. Simul. 15, 3284–3292 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Wang, M., Zhao, J., Georgi, G.: Output tracking control of nonlinear switched cascade systems using a variable structure control method. Int. J. Control 83, 394–403 (2010) zbMATHCrossRefGoogle Scholar
  31. 31.
    Yua, Y., Zhong, Y.: Robust backstepping output tracking control for SISO uncertain nonlinear systems with unknown virtual control coefficients. Int. J. Control 83, 1182–1192 (2010) CrossRefGoogle Scholar
  32. 32.
    Do, K.: Control of nonlinear systems with output tracking error constraints and its application to magnetic bearings. Int. J. Control 83, 1199–1216 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Han, Z., Xu, G.: Output feedback stabilisation of a tree-shaped network of vibrating strings with non-collocated observation. Int. J. Control 84, 458–475 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Wang, Z., Yang, F., Ho, D., Liu, X.: Robust variance-constrained H control for stochastic systems with multiplicative noises. J. Math. Anal. Appl. 328, 487–502 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Gershon, E., Shaked, U.: H output-feedback control of discrete-time systems with state-multiplicative noise. Automatica 44, 574–579 (2008) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ku, C., Huang, P., Chang, W.: Passive fuzzy controller design for nonlinear systems with multiplicative noises. J. Franklin Inst. 347, 732–750 (2010) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Costa, O., Benites, G.: Linear minimum mean square filter for discrete-time linear systems with Markov jumps and multiplicative noises. Automatica 47, 466–476 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Gao, H., Chen, T.: H estimation for uncertain systems with limited communication capacity. IEEE Trans. Autom. Control 52, 2070–2084 (2007) MathSciNetCrossRefGoogle Scholar
  39. 39.
    Fridman, E., Shaked, U., Suplin, V.: Input/output delay approach to robust sampled-data H control. Syst. Control Lett. 54, 271–282 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Gao, H., Chen, T., Lam, J.: A new delay system approach to network-based control. Automatica 4, 39–52 (2008) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Gao, H., Wu, J., Shi, P.: Robust sampled-data H control with stochastic sampling. Automatica 45, 1729–1736 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Gao, H., Chen, T.: Network-based H output tracking control. IEEE Trans. Autom. Control 53, 655–667 (2008) MathSciNetCrossRefGoogle Scholar
  43. 43.
    Gao, H., Sun, W., Shi, P.: Robust sampled-data H control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 18, 238–245 (2010) CrossRefGoogle Scholar
  44. 44.
    Jiang, C., Zhang, Q., Cai, M.: H control of networked control systems with state quantisation. Int. J. Syst. Sci. 42, 959–966 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Meza-Sanchez, I., Iliana, M., Aguilar, L., Shiriaev, A., Freidovich, L., Orlov, Y.: Periodic motion planning and nonlinear H tracking control of a 3-DOF underactuated helicopter. Int. J. Syst. Sci. 42, 829–838 (2011) zbMATHCrossRefGoogle Scholar
  46. 46.
    Senthilkumar, T., Balasubramaniam, P.: Delay-dependent robust H control for uncertain stochastic T-S fuzzy systems with time-varying state and input delays. Int. J. Syst. Sci. 42, 877–887 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Rasool, F., Nguang, S.: Quantized robust H control of discrete-time systems with random communication delays. Int. J. Syst. Sci. 42, 129–138 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Petersen, I., Hollot, C.: A Riccati eqnarray approach to the stabilization of uncertain linear systems. Automatica 22, 397–411 (1986) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Control Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory of Image Processing and Intelligent Control of Education Ministry of ChinaWuhanChina
  3. 3.Texas A& M University at QatarDohaQatar

Personalised recommendations