Advertisement

Nonlinear Dynamics

, Volume 70, Issue 1, pp 619–625 | Cite as

Finite-time convergent guidance law with impact angle constraint based on sliding-mode control

  • Yunxi Zhang
  • Mingwei Sun
  • Zengqiang Chen
Original Paper

Abstract

In this paper, a finite-time convergent sliding-mode guidance law with terminal impact angle constraint is presented. The guidance law insures that the line-of-sight angular rate will converge to zero before the final time of the guidance process. Meanwhile the flight-path angle will meet the terminal impact angle requirement. Based on the finite-time convergence stability theory and the variable structure control theory, the finite convergence time is determined. Finally, the simulation results show that the guidance law is effective.

Keywords

Variable structure control Sliding-mode guidance law Impact angle constraint Finite-time convergence 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 61174094, 60904064), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090031110029), National Natural Science Foundation of Tianjin (No. 09JCYBJC01700) and the Program for New Century Excellent Talents in University of China (No. NCET-10-0506).

References

  1. 1.
    Kim, M., Gilder, K.V.: Terminal guidance for impact attitude angle constrained night trajectories. IEEE Trans. Aerosp. Electron. Syst. 9(6), 852–859 (1973) CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Ma, P.B.: Three-dimensional guidance law with impact angle and impact time constraints. Acta Aeronaut. Astronaut. Sin. 29(4), 1020–1026 (2008) Google Scholar
  3. 3.
    Song, J.M., Zhang, T.Q.: The passive homing missile’s variable structure guidance law with terminal impact angular costraints. J. Ballist. 13(1), 16–21 (2001) Google Scholar
  4. 4.
    Kim, B.S., Lee, J.G., Han, H.S.: Biased PNG law for impact with angular constraint. IEEE Trans. Aerosp. Electron. Syst. 34(1), 277–288 (1998) CrossRefGoogle Scholar
  5. 5.
    Zheng, Z.Z., Wang, Y.J., Wu, H.: An improved optimal guidance law with impact angle constraints based on genetic algorithms. Int. J. Model. Identif. Control 10(1–2), 94–100 (2010) Google Scholar
  6. 6.
    Cao, S.B., Jiang, C.S., Guang, S.Y., Chen, M.: Research on the vertical intercept terminal guidance system of TV-command-guidance air-to-ground missile. J. Astronaut. 25(4), 393–397 (2004) Google Scholar
  7. 7.
    Yin, Y.X., Yang, M., Wu, P.: Three dimensional guidance law with attack angle constraint for maneuverable target. J. Solid Rocket. Technol. 33(3), 237–241 (2010) Google Scholar
  8. 8.
    Cui, S., Hang, Y.S., Wang, S.: The design of guidance law for TV-guided weapon with terminal angular constraint. J. Proj. Rocket. Missile Guid. 30(1), 78–83 (2010) Google Scholar
  9. 9.
    Haimo, V.: Finite time controllers. SIAM J. Control Optim. 24, 760–770 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hong, Y.G., Huang, J., Xu, Y.: On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 46, 305–309 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hong, Y.G.: Finite-time stabilization and stabilizability of a class of controllable systems. Syst. Control Lett. 46, 231–236 (2002) zbMATHCrossRefGoogle Scholar
  12. 12.
    Orlov, Y.: Finite time stability and robust control synthesis of uncertain switched systems. SIAM J. Control Optim. 43, 1253–1271 (2005) zbMATHCrossRefGoogle Scholar
  13. 13.
    Bhat, S., Bernsein, D.: Lyapunov analysis of finite-time differential equations. In: Proceedings of the American Control Conference, pp. 1831–1832 (1995) Google Scholar
  14. 14.
    Bhat, S., Bernsein, D.: Continuous finite-time stabilization of the translation and rotational double integrators. IEEE Trans. Autom. Control 43, 678–682 (1998) zbMATHCrossRefGoogle Scholar
  15. 15.
    Hong, Y.G., Cheng, D.Z.: Nonlinear Systems Analysis and Control. Science Press, Beijing (2005) Google Scholar
  16. 16.
    Wang, L., Sun, S.W., Xia, Y.C.: Finite-time stability of multi-agent system in disturbed environment. Nonlinear Dyn. 67, 2009–2016 (2012) zbMATHCrossRefGoogle Scholar
  17. 17.
    Guo, Z.Y., Huang, L.H.: Global exponential convergence and global convergence in finite time of non-autonomous discontinuous neural networks. Nonlinear Dyn. 58, 349–359 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Chiu, C.S., Shen, C.T.: Finite-time control of DC-DC buck converters via integral terminal sliding modes. Int. J. Electron. 99(5), 643–655 (2012) CrossRefGoogle Scholar
  19. 19.
    Zou, A.M., Krishna, D.K., Hou, Z.G., Liu, X.: Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Trans. Syst. Man Cybern. 41(4), 950–963 (2011) CrossRefGoogle Scholar
  20. 20.
    Poznyak, A.S., Polyakov, A.Y., Strygin, V.V.: Analysis of finite-time convergence by the method of Lyapunov functions in systems with second-order sliding modes. Int. J. Appl. Math. Mech. 75, 289–303 (2011) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhao, M.Y., Wei, M.Y.: Finite time stable variable structure guidance law with double closed-loop filters. Acta Aeronaut. Astronaut. Sin. 31(8), 1629–1635 (2010) Google Scholar
  22. 22.
    Shtessel, Y.B., Shkolnikov, I.A.: Integrated guidance and control of advanced interceptors using second order sliding modes. In: Proceedings of the IEEE Conference on Decision and Control, pp. 4587–4592 (2003) Google Scholar
  23. 23.
    Sun, S., Zhou, D.: A finite time convergent variable structure guidance law. J. Astronaut. 29(4), 1258–1262 (2008) Google Scholar
  24. 24.
    Zhou, D., Sun, S.: Guidance laws with finite time con-vergence. J. Guid. Control Dyn. 32(6), 1838–1846 (2009) CrossRefGoogle Scholar
  25. 25.
    Sun, S., Zhou, D., Hou, W.T.: A guidance law with finite time convergence accounting for autopilot lag. Aerosp. Sci. Technol. (2012, in press). doi: 10.1016/j.ast.2011.12.016
  26. 26.
    Ding, S.H., Li, S.H., Luo, S.: Guidance law design based on continuous finite-time control technique. J. Astronaut. 32(4), 727–733 (2011) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of AutomationNankai UniversityTianjinP.R. China

Personalised recommendations