Nonlinear Dynamics

, Volume 70, Issue 1, pp 571–584 | Cite as

Decentralized coordination of autonomous swarms inspired by chaotic behavior of ants

  • Fangzhen Ge
  • Zhen Wei
  • Yang Lu
  • Yiming Tian
  • Lixiang Li
Original Paper

Abstract

In this paper, we propose a decentralized coordination algorithm for a group of mobile nodes, called an autonomous swarm, on a finite two-dimensional space, which can efficiently coordinate cooperatively the autonomous swarm to the optimal solution. Our algorithm is inspired by chaotic behavior of a single ant and self-organization behavior of the whole ant colony. To construct this algorithm, we firstly assume that each agent is a nonlinear oscillator presenting the chaotic behavior of a single ant. Then we establish a self-organization mechanism according to the self-organization behavior of the whole ant colony. Moreover, we analyze the convergence of the proposed algorithm. Finally, we experimentally evaluate the performance of our algorithm with the clustering and dispersion operations of a swarm. Comparison results of the proposed algorithm and the gradient-type one are also presented to illustrate the effectiveness of the proposed scheme in approximately global optimization for swarms.

Keywords

Decentralized coordination Autonomous swarms Nonlinear oscillator Self-organization 

Notes

Acknowledgements

The authors would like to thank the editor and all the anonymous reviewers for their valuable comments and suggestions that improved the paper’s quality. This work is supported by the National Natural Science Foundation of China (Grant No. 61070220), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090111110002), the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 121062), the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-10-0239), and the Education Department of Anhui Province Natural Science Foundation of China (Grant No. KJ2011B147).

References

  1. 1.
    Parrish, J.K., Viscido, S.V., Grunbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202(3), 296–305 (2002) CrossRefGoogle Scholar
  2. 2.
    Gueron, S., Levin, S.A.: Self-organization of front patterns in large wildebeest herds. J. Theor. Biol. 165(4), 541–552 (1993) CrossRefGoogle Scholar
  3. 3.
    Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. Autom. Control 48(4), 692–697 (2003) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control: collective group behavior through local interaction. IEEE Control Syst. Mag. 27(2), 71–82 (2007) CrossRefGoogle Scholar
  7. 7.
    Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. Autom. Control 49(4), 622–629 (2004) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cortés, J., Martínez, S., Bullo, F.: Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans. Autom. Control 51(8), 1289–1298 (2006) CrossRefGoogle Scholar
  9. 9.
    Su, H., Wang, X., Lin, Z.: Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control 54(2), 293–307 (2009) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tanner, H., Jadbabaie, A., Pappas, G.J.: Flocking in fixed and switching networks. IEEE Trans. Autom. Control 52(5), 863–868 (2007) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Egerstedt, M., Hu, X.: Formation constrained multi-agent control. IEEE Trans. Robot. Autom. 17, 947–951 (2001) CrossRefGoogle Scholar
  14. 14.
    Justh, E., Krishnaprasad, P.S.: Equilibria and steering laws for planar formations. Syst. Control Lett. 52, 25–38 (2004) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Xi, W., Tan, X., Baras, J.S.: Gibbs sampler-based coordination of autonomous swarms. Automatica 42(7), 1107–1119 (2006) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Cortés, J., Martínez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004) CrossRefGoogle Scholar
  17. 17.
    Martínez, S., Bullo, F.: Optimal sensor placement and motion coordination for target tracking. Automatica 42(4), 661–668 (2006) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Reynolds, C.W.: Flocks, herds, and schools: a distributed behavior model. Comput. Graph. 21(4), 25–34 (1987) CrossRefGoogle Scholar
  19. 19.
    Liu, Y., Passino, K.M.: Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J. Optim. Theory Appl. 115(3), 603–628 (2002) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995) CrossRefGoogle Scholar
  21. 21.
    Tan, X., Xi, W., Baras, J.S.: Decentralized coordination of autonomous swarms using parallel Gibbs sampling. Automatica 46(12), 2068–2076 (2010) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Rigatos, G.G.: Coordinated motion of autonomous vehicles with the use of a distributed gradient algorithm. Appl. Math. Comput. 199, 494–503 (2008) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Li, L., Peng, H., Wang, X., Yang, Y.: An optimization method inspired by chaotic ant behavior. Int. J. Bifurc. Chaos 16, 2351–2364 (2006) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Wan, M., Li, L., Xiao, J., Yang, Y., Wang, C., Guo, X.: CAS based clustering algorithm for web users. Nonlinear Dyn. 61, 347–361 (2010) MATHCrossRefGoogle Scholar
  25. 25.
    Peng, H., Li, L., Yang, Y., Liu, F.: Parameter estimation of dynamical systems via chaotic ant swarm. Phys. Rev. E 81, 016207 (2010) CrossRefGoogle Scholar
  26. 26.
    Cai, J., Ma, X., Li, L., Yang, Y., Peng, H., Wang, X.: Chaotic ant swarm optimization to economic dispatch. Electr. Power Syst. Res. 77, 1373–1380 (2007) CrossRefGoogle Scholar
  27. 27.
    Ge, F., Wei, Z., Lu, Y., Li, L., Yang, Y.: Disturbance chaotic ant swarm. Int. J. Bifurc. Chaos 21(9), 2597–2622 (2011) CrossRefGoogle Scholar
  28. 28.
    Wei, Z., Ge, F., Lu, Y., Li, L., Yang, Y.: Chaotic ant swarm for the traveling salesman problem. Nonlinear Dyn. 65, 271–281 (2011) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hong, W.: Application of chaotic ant swarm optimization in electric load forecasting. Energy Policy 38, 5830–5839 (2010) CrossRefGoogle Scholar
  30. 30.
    Schill, F.: Distributed communication in swarms of autonomous underwater vehicles. PhD thesis, Australia, The Australian National University, pp. 20–21 (2007) Google Scholar
  31. 31.
    Cavalcante, H., Gauthier, D., Socolar, J.: On the origin of chaos in autonomous Boolean networks. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 368, 495–513 (2010) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Kennedy, M.P.: Experimental chaos from autonomous electronic circuits. Philos. Trans. R. Soc. Lond. A 353, 13–32 (1995) MATHCrossRefGoogle Scholar
  33. 33.
    Dercole, F., Rinaldi, S.: Evolutionary dynamics can be chaotic: a first example. Int. J. Bifurc. Chaos 20(11), 3473–3485 (2010) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Van Gorder, R.A., Vajravelu, K.: Emergence of chaotic regimes in the generalized Lorenz canonical form: a competitive modes analysis. Nonlinear Dyn. 66, 153–160 (2011) CrossRefGoogle Scholar
  35. 35.
    Nowak, M., Sigmund, K.: Chaos and the evolution of cooperation. Proc. Natl. Acad. Sci. USA 90, 5091–5094 (1993) CrossRefGoogle Scholar
  36. 36.
    Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10, 161–195 (1987) CrossRefGoogle Scholar
  37. 37.
    Harter, D., Kozma, R.: Chaotic neurodynamics for autonomous agents. IEEE Trans. Neural Netw. 16(3), 565–579 (2005) CrossRefGoogle Scholar
  38. 38.
    Mondada, F., Pettinaro, G., Guigrard, A., Kwee, I., Floreano, D., Denebourg, J.-L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: a new distributed robotic concept. Auton. Robots 17(2), 193–221 (2004) CrossRefGoogle Scholar
  39. 39.
    Montresor, A., Meling, H., Babaoğlu, Ö.: Messor: Load-balancing through a swarm of autonomous agents. In: Proc. of 1st Int. Workshop on Agents and Peer-to-Peer Computing, 1st ACM Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, vol. 2530, pp. 125–137. Springer, Heidelberg (2002) Google Scholar
  40. 40.
    Cole, B.J.: Is animal behavior chaotic? Evidence from the activity of ants. Proc. R. Soc. Lond. B, Biol. Sci. 244, 253–259 (1991) CrossRefGoogle Scholar
  41. 41.
    Solé, R.V., Miramontes, O., Goodwill, B.C.: Oscillations and chaos in ant societies. J. Theor. Biol. 161, 343–357 (1993) CrossRefGoogle Scholar
  42. 42.
    Miramontes, O.: Order-disorder transitions in the behavior of ant societies. Complexity 1, 56–60 (1995) Google Scholar
  43. 43.
    Couzin Iain, D.: Collective cognition in animal groups. Trends Cogn. Sci. 13(1), 36–43 (2009) CrossRefGoogle Scholar
  44. 44.
    Cole, B.J.: Short-term activity cycles in ants: generation of periodicity by worker interaction. Am. Nat. 137, 244–259 (1991) CrossRefGoogle Scholar
  45. 45.
    Hamann, H., Schmickl, T., Crailsheim, K.: Thermodynamics of emergence: Langton’s ant meets Boltzmann. In: Proceedings of 2011 IEEE Symposium on Artificial Life, Prais, France, pp. 62–69. IEEE Service Center, Piscataway (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Fangzhen Ge
    • 1
    • 2
  • Zhen Wei
    • 1
  • Yang Lu
    • 1
  • Yiming Tian
    • 1
  • Lixiang Li
    • 3
  1. 1.School of Computer and InformationHefei University of TechnologyHefeiP.R. China
  2. 2.School of Computer Science and TechnologyHuaibei Normal UniversityHuaibeiP.R. China
  3. 3.Information Security CenterBeijing University of Posts and TelecommunicationsBeijingP.R. China

Personalised recommendations