Advertisement

Nonlinear Dynamics

, Volume 69, Issue 4, pp 2089–2096 | Cite as

Robust adaptive sliding mode control for synchronization of space-clamped FitzHugh–Nagumo neurons

  • Chi-Ching Yang
  • Chun-Liang Lin
Original Paper

Abstract

Unlike taking the same external electrical stimulation to discuss chaotic synchronization in the literature, the synchronization between two uncouple FitzHugh–Nagumo (FHN) neurons with different ionic currents and external electrical stimulations is considered. The main contribution of this study is the application of a robust adaptive sliding-mode controller instead of the active elimination. The proposed sliding mode controller associated with time varying feedback gains cannot only tackle the system uncertainties and external disturbances, but also compensate for the mismatch nonlinear dynamics of synchronized error system without direct cancellation. Meanwhile, these feedback gains are not determined in advance but updated by the adaptive laws. Sufficient conditions to guarantee the stable synchronization are given in the sense of the Lyapunov stability theorem. In addition, numerical simulations are also performed to verify the effectiveness of presented scheme.

Keywords

Synchronization FitzHugh–Nagumo (FHN) neuron Different external electrical stimulations Adaptive sliding mode control 

Notes

Acknowledgements

This work was supported in part by the National Science Council, Taiwan, Republic of China, under the Grant NSC 100-2221-E-164-002.

References

  1. 1.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952) Google Scholar
  2. 2.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. J. Biophys. 1, 445–466 (1961) CrossRefGoogle Scholar
  3. 3.
    Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962) CrossRefGoogle Scholar
  4. 4.
    Bautin, A.N.: Qualitative investigation of a particular nonlinear system. J. Appl. Math. Mech. 39, 606–615 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gao, Y.: Chaos and bifurcation in the space-clamped FitzHugh–Nagumo system. Chaos Solitons Fractals 21, 943–956 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Wei, D.Q., Luo, X.S., Zhang, B., Qin, Y.H.: Controlling chaos in space-clamped FitzHugh–Nagumo neuron by adaptive passive method. Nonlinear Anal., Real World Appl. 11, 1752–1759 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Wang, J., Zhang, T., Deng, B.: Synchronization of FitzHugh–Nagumo neurons in external electrical stimulation via nonlinear control. Chaos Solitons Fractals 31, 30–38 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Wang, J., Zhang, Z., Li, H.: Synchronization of FitzHugh–Nagumo neurons in EES via H variable universe adaptive fuzzy control. Chaos Solitons Fractals 36, 1332–1339 (2008) zbMATHCrossRefGoogle Scholar
  9. 9.
    Wei, X., Wang, J., Deng, B.: Introducing internal model to robust output synchronization of FitzHugh–Nagumo neurons in external electrical stimulation. Commun. Nonlinear Sci. Numer. Simul. 14, 3108–3119 (2009) CrossRefGoogle Scholar
  10. 10.
    Li, Y., Jiang, W.: Hopf and Bogdanov–Takens bifurcations in a coupled FitzHugh–Nagumo neural system with delay. Nonlinear Dyn. 65, 161–173 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Zhang, T., Wang, J., Fei, X., Deng, B.: Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control. Chaos Solitons Fractals 33, 194–202 (2007) CrossRefGoogle Scholar
  12. 12.
    Deng, B., Wang, J., Fei, X.: Synchronization two coupled chaotic neurons in external electrical stimulation using backstepping control. Chaos Solitons Fractals 29, 182–189 (2006) CrossRefGoogle Scholar
  13. 13.
    Yu, H., Wang, J., Deng, B., Wei, X., Che, Y., Wong, Y.K., Chan, W.L., Tsang, K.M.: Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation. Commun. Nonlinear Sci. Numer. Simul. 17, 1344–1354 (2012) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Che, Y.Q., Wang, J., Cui, S.G., Deng, B., Wei, X.L., Chan, W.L., Tsang, K.M.: Chaos synchronization of coupled neurons via adaptive sliding mode control. Nonlinear Anal., Real World Appl. 12, 3199–3206 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Che, Y.Q., Wang, J., Zhou, S.S., Deng, B.: Robust synchronization control of coupled chaotic neurons under external electrical stimulation. Chaos Solitons Fractals 40, 1333–1342 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Che, Y.Q., Wang, J., Chan, W.L., Tsang, K.M.: Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control. Nonlinear Dyn. 61, 847–857 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chou, M.H., Lin, Y.T.: Exotic dynamic behavior of the forced FitzHugh–Nagumo equations. Comput. Math. Appl. 32, 109–119 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992) zbMATHGoogle Scholar
  19. 19.
    Yahyazadeh, M., Noei, A.R., Ghaderi, R.: Synchronization of chaotic systems with known and unknown parameters using a modified active sliding mode control. ISA Trans. 50, 262–267 (2011) CrossRefGoogle Scholar
  20. 20.
    Yau, H.T.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos Solitons Fractals 22, 341–347 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Li, W., Liu, Z., Miao, J.: Adaptive synchronization for a unified chaotic system with uncertainty. Commun. Nonlinear Sci. Numer. Simul. 15, 3015–3021 (2010) CrossRefGoogle Scholar
  22. 22.
    Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 16, 2853–2868 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Wang, H., Han, Z., Xie, Q., Zhang, W.: Finite-time chaos synchronization of unified chaotic system with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 14, 2239–2247 (2009) CrossRefGoogle Scholar
  24. 24.
    Yau, H.T., Lin, J.S., Yan, J.J.: Synchronization control for a class of chaotic systems with uncertainties. Int. J. Bifurc. Chaos 15, 2235–2246 (2005) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department and Graduate Institute of Electrical EngineeringHsiuping University of Science and TechnologyTaichung CityTaiwan, ROC
  2. 2.Department of Electrical EngineeringNational Chung-Hsing UniversityTaichung CityTaiwan, ROC

Personalised recommendations