Nonlinear Dynamics

, Volume 69, Issue 4, pp 1929–1939 | Cite as

Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system

  • Ling Liu
  • Deliang Liang
  • Chongxin Liu
Original Paper


In this paper, we consider an observer-based control approach for manipulating projective synchronization of nonlinear systems in high dimensional. Based on the stability theory of the fractional-order dynamical system, a nonlinear state observer is designed which can achieve projective synchronization in a class of high dimensional fractional-order hyperchaotic systems without restriction of partial-linearity and calculating the Lyapunov index of system. Simulation studies are included to demonstrate the effectiveness and feasibility of the proposed approach and synthesis procedures.


Fractional-order Hyperchaotic system Nonlinear state observer Projective synchronization 



This work was supported by State key Laboratory of Electrical Insulation and Power Equipment (No. EIPE12312), National Natural Science Foundation of China (Grant Nos. 51177117, 51177125) and Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (No. 20100201110023).


  1. 1.
    Pecora, L., Carroll, T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen, G.R., Lai, D.: Anticontrol of chaos via feedback. Int. J. Bifurc. Chaos 8, 1585–1590 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ge, S.S., Wang, C., Lee, T.H.: Adaptive backstepping control of a class of chaotic systems. Int. J. Bifurc. Chaos 10(5), 1149–1156 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Wang, C., Ge, S.S.: Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos Solitons Fractals 12(7), 1199–1206 (2001) zbMATHCrossRefGoogle Scholar
  5. 5.
    Liu, L., Liu, C.X., Zhang, Y.B.: Theoretical analysis and circuit implementation of a novel complicated hyperchaotic system. Nonlinear Dyn. 66(4), 707–715 (2011) CrossRefGoogle Scholar
  6. 6.
    Liu, L., Liu, C.X., Zhang, Y.B.: Analysis of a novel four-dimensional hyperchaotic system. Chin. J. Phys. 46(4), 386–393 (2008) Google Scholar
  7. 7.
    Meng, J., Wang, X.Y.: Nonlinear observer based phase synchronization of chaotic systems. Phys. Lett. A 369(4), 294–298 (2007) zbMATHCrossRefGoogle Scholar
  8. 8.
    Hu, M.F., Xu, Z.Y.: A general scheme for Q-S synchronization of chaotic systems. Nonlinear Anal. 69, 1091–1099 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Wang, X.Y., Meng, J.: Observer-based adaptive fuzzy synchronization for hyperchaotic systems. Chaos 18(3), 033102 (2008) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, X.Y., Song, J.M.: Synchronization of the fractional order hyperchaos lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3351–3357 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lin, D., Wang, X.Y.: Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation. Fuzzy Sets Syst. 161(15), 2066–2080 (2010) zbMATHCrossRefGoogle Scholar
  12. 12.
    Caputo, M.: Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 179, 529–539 (1967) Google Scholar
  13. 13.
    Caputo, M., Mainardi, F.: A new dissipaton model based on memory mechanism. Pure Appl. Geophys. 91(8), 134–147 (1971) CrossRefGoogle Scholar
  14. 14.
    Oldham, K., Hardcover, S.J.: The Fractional Calculus, p. 168. Academic Press, San Diego (1974) zbMATHGoogle Scholar
  15. 15.
    Lavoie, J.L., Osler, T.J., Tremblay, R.: Fractional derivatives and special functions. SIAM Rev. 18(2), 240–268 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hartley, T., Lorenzo, C., Qammer, H.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 42(8), 485–490 (1995) CrossRefGoogle Scholar
  19. 19.
    Wajdi, M.: Hyperchaos in fractional order nonlinear systems. Chaos Solitons Fractals 26(5), 1459–1465 (2005) zbMATHCrossRefGoogle Scholar
  20. 20.
    Lu, J.J., Liu, C.X.: Realization of fractional-order Liu chaotic system by circuit. Chin. Phys. B 16(6), 1586–1590 (2007) CrossRefGoogle Scholar
  21. 21.
    Liu, C.X., Liu, L.: Circuit implementation of a new hyperchaos in fractional-order system. Chin. Phys. B 17(8), 2829–2837 (2008) CrossRefGoogle Scholar
  22. 22.
    Liu, L., Liu, C.X., Zhang, Y.B.: Experimental verification of a four-dimensional Chua’s system and its fractional order chaotic attractors. Int. J. Bifurc. Chaos 19(8), 2473–2486 (2009) zbMATHCrossRefGoogle Scholar
  23. 23.
    Yu, Y., Li, H., Wang, S., Yu, J.: Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Solitons Fractals 42(2), 1181–1189 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lu, J.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26(4), 1125–1133 (2005) zbMATHCrossRefGoogle Scholar
  25. 25.
    Deng, W.: Generalized synchronization in fractional order systems. Phys. Rev. E 75(5), 201–207 (2007) Google Scholar
  26. 26.
    Wang, X.Y., Wang, M.J.: Dynamic analysis of the fractional order Liu system and its synchronization. Chaos 17(3), 033106 (2007) CrossRefGoogle Scholar
  27. 27.
    Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387(1), 57–70 (2008) CrossRefGoogle Scholar
  28. 28.
    Zhou, S.B., Li, H., Zhu, Z.Z.: Chaos control and synchronization in a fractional neuron network system. Chaos Solitons Fractals 36(4), 973–984 (2006) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wu, X., Lu, H., Shen, S.: Synchronization of a new fractional-order hyperchaotic system. Phys. Lett. A 373(27), 2329–2337 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Mainieri, R., Pehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15), 3042–3045 (1999) CrossRefGoogle Scholar
  31. 31.
    Xu, D.L.: Control of projective synchronization in chaotic systems. Phys. Rev. E 63(2), 027201 (2001) Google Scholar
  32. 32.
    Xu, D.L., Chee, C.Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension. Phys. Rev. E 66, 046218 (2002) Google Scholar
  33. 33.
    Li, G.H.: Generalized projective synchronization of two chaotic systems by using active control. Chaos Solitons Fractals 30(1), 77–82 (2006) zbMATHCrossRefGoogle Scholar
  34. 34.
    Wen, G.l., Xu, D.l.: Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems. Chaos Solitons Fractals 26(1), 71–77 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Chen, X.R., Liu, C.X., Li, Y.X.: Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system. Acta Phys. Sin. 57(3), 1453–1457 (2008) MathSciNetzbMATHGoogle Scholar
  36. 36.
    Wang, X.Y., He, Y.J.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372(4), 435–441 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Cao, J., Daniel, W., Yang, Y.: Projective synchronization of a class of delayed chaotic systems via impulsive control. Phys. Lett. A 373(35), 3128–3133 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Wang, X.Y., Nian, F.Z., Guo, G.: High precision fast projective synchronization in chaotic (hyperchaotic) systems. Phys. Lett. A 373(20), 1754–1761 (2009) zbMATHCrossRefGoogle Scholar
  39. 39.
    Wang, X.Y., Fan, B.: Generalized projective synchronization of a class of hyperchaotic systems based on state observer. Commun. Nonlinear Sci. Numer. Simul. 17(2), 953–963 (2012) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wang, Z.L.: Projective synchronization of hyperchaotic Lu system and Liu system. Nonlinear Dyn. 59(3), 455–462 (2010) zbMATHCrossRefGoogle Scholar
  41. 41.
    Wu, X.J., Wang, H.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 61(3), 407–417 (2010) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations