Nonlinear Dynamics

, Volume 69, Issue 4, pp 1589–1610 | Cite as

Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity

Original Paper

Abstract

The nonlinear dynamical behavior of a micromechanical resonator acting as one of the mirrors in an optical resonance cavity is investigated. The mechanical motion is coupled to the optical power circulating inside the cavity both directly through the radiation pressure and indirectly through heating that gives rise to a frequency shift in the mechanical resonance and to thermal deformation. The energy stored in the optical cavity is assumed to follow the mirror displacement without any lag. In contrast, a finite thermal relaxation rate introduces retardation effects into the mechanical equation of motion through temperature dependent terms. Using a combined harmonic balance and averaging technique, slow envelope evolution equations are derived. In the limit of small mechanical vibrations, the micromechanical system can be described as a nonlinear Duffing-like oscillator. Coupling to the optical cavity is shown to introduce corrections to the linear dissipation, the nonlinear dissipation and the nonlinear elastic constants of the micromechanical mirror. The magnitude and the sign of these corrections depend on the exact position of the mirror and on the optical power incident on the cavity. In particular, the effective linear dissipation can become negative, causing self-excited mechanical oscillations to occur as a result of either a subcritical or supercritical Hopf bifurcation. The full slow envelope evolution equations are used to derive the amplitudes and the corresponding oscillation frequencies of different limit cycles, and the bifurcation behavior is analyzed in detail. Finally, the theoretical results are compared to numerical simulations using realistic values of various physical parameters, showing a very good correspondence.

Keywords

Optomechanical cavity MEMS Hopf bifurcation Self-excited oscillations Forced vibration Duffing oscillator Harmonic balance—averaging 

References

  1. 1.
    Crookes, W.: On attraction and repulsion resulting from radiation—Part II. Proc. R. Soc. Lond. 23, 373–378 (1874–1875) Google Scholar
  2. 2.
    Lebedew, P.: Untersuchungen über die druckkräfte des lichtes. Ann. Phys. 311, 433–458 (1901). Russian translation in P. Lebedew, ‘Selected Works’, A.K. Timiriazev (ed.), Moscow, 1949 CrossRefGoogle Scholar
  3. 3.
    Nichols, E.F., Hull, G.F.: A preliminary communication on the pressure of heat and light radiation. Phys. Rev. I 13(5), 307–320 (1901) Google Scholar
  4. 4.
    Hollerman, W.A.: The Physics of Solar Sails. NASA Marshall Space Flight Center, MSFC, Huntsville (2002) Google Scholar
  5. 5.
    Braginsky, V.B., Manukin, A.B.: Ponderomotive effects of electromagnetic radiation. Zh. Eksp.Teor. Fiz. 52, 986–989 (1967) (in Russian) Google Scholar
  6. 6.
    Braginsky, V.B., Manukin, A.B., Tikhonov, M.Yu.: Investigation of dissipative ponderomotive effects of electromagnetic radiation. Zh. Eksp.Teor. Fiz. 58, 1550–1555 (1970) (in Russian) Google Scholar
  7. 7.
    Kimble, H.J., Levin, Y., Matsko, A.B., Thorne, K.S., Vyatchanin, S.P.: Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001) Google Scholar
  8. 8.
    Corbitt, T., Ottaway, D., Innerhofer, E., Pelc, J., Mavalvala, N.: Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity. Phys. Rev. A 74, 021802 (2006) CrossRefGoogle Scholar
  9. 9.
    Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: Back-action at the mesoscale. Science 321(5893), 1172–1176 (2008) CrossRefGoogle Scholar
  10. 10.
    Schliesser, A., Riviere, R., Anetsberger, G., Arcizet, O., Kippenberg, T.J.: Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008) CrossRefGoogle Scholar
  11. 11.
    Genes, C., Vitali, D., Tombesi, P., Gigan, S., Aspelmeyer, M.: Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008) CrossRefGoogle Scholar
  12. 12.
    Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong coupling regime. arXiv:1011.3067 (2010)
  13. 13.
    Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T.J., Vahala, K.J.: Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005) CrossRefGoogle Scholar
  14. 14.
    Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M., Heidmann, A.: Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006) CrossRefGoogle Scholar
  15. 15.
    Gigan, S., Böhm, H.R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Bäuerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006) CrossRefGoogle Scholar
  16. 16.
    Paternostro, M., Gigan, S., Kim, M.S., Blaser, F., Böhm, H.R., Aspelmeyer, M.: Reconstructing the dynamics of a movable mirror in a detuned optical cavity. New J. Phys. 8, 107 (2006) CrossRefGoogle Scholar
  17. 17.
    Jayich, A.M., Sankey, J.C., Zwickl, B.M., Yang, C., Thompson, J.D., Girvin, S.M., Clerk, A.A., Marquardt, F., Harris, J.G.E.: Dispersive optomechanics: A membrane inside a cavity. New J. Phys. 10, 095008 (2008) CrossRefGoogle Scholar
  18. 18.
    Marino, F., Marin, F.: Chaotically spiking attractors in suspended mirror optical cavities. arXiv:1006.3509 (2010)
  19. 19.
    Stokes, N.A.D., Fatah, R.M.A., Venkatesh, S.: Self-excitation in fibre-optic microresonator sensors. Sens. Actuators A 21, 369–372 (1990) CrossRefGoogle Scholar
  20. 20.
    Hane, K., Suzuki, K.: Self-excited vibration of a self-supporting thin film caused by laser irradiation. Sens. Actuators A 51, 179–182 (1996) Google Scholar
  21. 21.
    Metzger, C., Karrai, K.: Cavity cooling of a microlever. Nature 432, 1002–1005 (2004) CrossRefGoogle Scholar
  22. 22.
    Jourdan, G., Comin, F., Chevrier, J.: Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever. Phys. Rev. Lett. 101, 133904 (2008) CrossRefGoogle Scholar
  23. 23.
    Metzger, C., Ludwig, M., Neuenhahn, C., Ortlieb, A., Favero, I., Karrai, K., Marquardt, F.: Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008) CrossRefGoogle Scholar
  24. 24.
    Ludwig, M., Neuenhahn, C., Metzger, C., Ortlieb, A., Favero, I., Karrai, K., Marquardt, F.: Self-induced oscillations in an optomechanical system. arXiv:0711.2661 (2007)
  25. 25.
    Restrepo, J., Gabelli, J., Ciuti, C., Favero, I.: Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. arXiv:1011.3911 (2010)
  26. 26.
    Liberato, S.D., Lambert, N., Nori, F.: Quantum limit of photothermal cooling. arXiv:1011.6295 (2010)
  27. 27.
    Velikovich, A.L., Golubev, G.P., Golubchenko, V.P., Luchinsky, D.G.: Tristability and self-oscillations in a double resonator system. Opt. Commun. 80, 444–452 (1991) CrossRefGoogle Scholar
  28. 28.
    Braginsky, V.B., Strigin, S.E., Vyatchanin, S.P.: Parametric oscillatory instability in Fabry-Perot (FP) interferometer. Phys. Lett. A 287, 331–337 (2001) CrossRefGoogle Scholar
  29. 29.
    Kim, K., Lee, S.: Self-oscillation mode induced in an atomic force microscope cantilever. J. Appl. Phys. 91(7), 4715 (2002) CrossRefGoogle Scholar
  30. 30.
    Aubin, K., Zalalutdinov, M., Alan, T., Reichenbach, R.B., Rand, R., Zehnder, A., Parpia, J., Craighead, H.: Limit cycle oscillations in CW laser-driven NEMS. J. Microelectromech. Syst. 13, 1018–1026 (2004) CrossRefGoogle Scholar
  31. 31.
    Kippenberg, T.J., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K.J.: Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005) CrossRefGoogle Scholar
  32. 32.
    Marquardt, F., Harris, J.G.E., Girvin, S.M.: Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006) CrossRefGoogle Scholar
  33. 33.
    Sahai, T., Bhiladvala, R.B., Zehnder, A.T.: Thermomechanical transitions in doubly-clamped micro-oscillators. Int. J. Non-Linear Mech. 42, 596–607 (2007) CrossRefGoogle Scholar
  34. 34.
    Lyshevski, S.E., Lyshevski, M.A.: Nano- and microoptoelectromechanical systems and nanoscale active optics. In: Third IEEE Conference on Nanotechnology, 2003, vol. 2, pp. 840–843 (2003) CrossRefGoogle Scholar
  35. 35.
    Wu, M.C., Solgaard, O., Ford, J.E.: Optical MEMS for lightwave communication. J. Lightwave Technol. 24(12), 4433–4454 (2006) CrossRefGoogle Scholar
  36. 36.
    Hossein-Zadeh, M., Vahala, K.J.: An optomechanical oscillator on a silicon chip. IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010) CrossRefGoogle Scholar
  37. 37.
    Dykman, M.I., Krivoglaz, M.A.: Theory of nonlinear oscillator interacting with a medium. In: Khalatnikov, I.M. (ed.) Soviet Scientific Reviews, Section A. Physics Reviews, vol. 5, pp. 265–441. Harwood Academic, Reading (1984) Google Scholar
  38. 38.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley Classics Library. Wiley, New York (1995) Google Scholar
  39. 39.
    Szemplińska-Stupnicka, W.: The Behavior of Nonlinear Vibrating Systems. Mechanics: Dynamical Systems. Kluwer Academic Publishers, Dordrecht (1990) CrossRefGoogle Scholar
  40. 40.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, New York (1994) Google Scholar
  41. 41.
    Ludwig, M., Kubala, B., Marquardt, F.: The optomechanical instability in the quantum regime. New J. Phys. 10, 095013 (2008) CrossRefGoogle Scholar
  42. 42.
    Lazarus, A., Barois, T., Perisanu, S., Poncharal, P., Manneville, P., de Langre, E., Purcell, S.T., Vincent, P., Ayari, A.: Simple modeling of self-oscillation in nano-electro-mechanical systems. arXiv:1004.1062 (2010)
  43. 43.
    Zaitsev, S., Pandey, A.K., Shtempluck, O., Buks, E.: Forced and self-excited oscillations of an optomechanical cavity. Phys. Rev. E 84, 046605 (2011) CrossRefGoogle Scholar
  44. 44.
    Yariv, A.: Optical Electronics, 4th edn. The Holt, Rinehart and Winston Series in Electrical Engineering. Saunders College Publishing, Philadelphia (1991) Google Scholar
  45. 45.
    Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999) MATHGoogle Scholar
  46. 46.
    McVoy, K.W., Heller, L., Bolsterli, M.: Optical analysis of potential well resonances. Rev. Mod. Phys. 39(1), 245–258 (1967) CrossRefGoogle Scholar
  47. 47.
    Sumetsky, M., Eggleton, B.: Modeling and optimization of complex photonic resonant cavity circuits. Opt. Express 11(4), 381–391 (2003) CrossRefGoogle Scholar
  48. 48.
    Viviescas, C., Hackenbroich, G.: Field quantization for open optical cavities. Phys. Rev. A 67, 013805 (2003) CrossRefGoogle Scholar
  49. 49.
    Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67, 859–883 (2012) CrossRefGoogle Scholar
  50. 50.
    Xu, J., Chung, K.W.: Effects of time delayed position feedback on a van der Pol-{D}uffing oscillator. Physica D 180, 17–39 (2003) MathSciNetMATHGoogle Scholar
  51. 51.
    Lifshitz, R., Cross, M.C.: Nonlinear dynamics of nanomechanical and micromechanical resonators. In: Schuster, H.G. (ed.) Reviews of Nonlinear Dynamics and Complexity, vol. 1, pp. 1–48. Wiley-VCH, Weinheim (2008) CrossRefGoogle Scholar
  52. 52.
    Guckel, H., Burns, D., Rutigliano, C., Lovell, E., Choi, B.: Diagnostic microstructures for the measurement of intrinsic strain in thin films. J. Micromech. Microeng. 2(2), 86–95 (1992) CrossRefGoogle Scholar
  53. 53.
    Fang, W., Wickert, J.A.: Post buckling of micromachined beams. J. Micromech. Microeng. 4, 116–122 (1994) CrossRefGoogle Scholar
  54. 54.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Berlin (1983) MATHGoogle Scholar
  55. 55.
    Pandey, A.K., Gottlieb, O., Shtempluck, O., Buks, E.: Performance of an AuPd micromechanical resonator as a temperature sensor. Appl. Phys. Lett. 96, 203105 (2010) CrossRefGoogle Scholar
  56. 56.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Electrical EngineeringTechnion–Israel Institute of TechnologyHaifaIsrael

Personalised recommendations