Nonlinear Dynamics

, Volume 69, Issue 4, pp 1525–1539 | Cite as

A novel chaotic approach for information hiding in image

Original Paper

Abstract

Hiding information in image has been proposed as a methodology for transmitting messages through innocuous covers to conceal their existence. This work investigates current state-of-the-art methods and provides a new and efficient approach to digital image steganography. We proposed an asymmetric image steganographic method based on a chaotic dynamic system. The hidden message can be recovered using orbits different from the embedding orbits, and the original image is not required to extract the hidden message. In the real communication, the receiver can use the same system as well as retrieving the data back that has been hidden inside the image. However, a secret key is needed by the receiver in order to retrieve the data back. This secret key is generated to use the proposed algorithm during the process of hiding the data. In contrast to current method, by using the secret key to retrieve the data, it maintains privacy, confidentiality, and accuracy of the data. The experimental results on USC data base demonstrates that the proposed encryption algorithm has a low time complexity and has the advantages of large key space and high security. In addition, the discussions reveal that the proposed scheme possesses security, imperceptibility, and survivability. The results are promising and point to the advocacy and coherence of the developed algorithm.

Keywords

Chaos encryption Image hiding technology Secret key Image processing 

References

  1. 1.
    Wang, X., Wang, X., Zhao, J., Zhang, Z.: Chaotic encryption algorithm based on alternant of stream cipher and block cipher. Nonlinear Dyn. 63(4), 587–597 (2011). doi:10.1007/s11071-010-9821-4 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chang, C.C., Hwang, M.S., Chen, T.S.: A new encryption algorithm for image cryptosystems. J. Syst. Softw. 58, 83–91 (2001) CrossRefGoogle Scholar
  3. 3.
    Mao, Y.B., Chen, G., Lian, S.G.: A novel fast image encryption scheme based on the 3D chaotic baker map. Int. J. Bifurc. Chaos 14, 3613–3624 (2004) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cheddad, A., Condell, J., Curran, K., McKevitt, P.: A secure and improved self-embedding algorithm to combat digital document for gery. Signal Process. 89(12), 23–32 (2009) Google Scholar
  5. 5.
    Cheddad, A., Condell, J., Curran, K., McKevitt, P.: Digital image steganography: survey and analysis of current methods. Signal Process. 90(3), 727–752 (2010) MATHCrossRefGoogle Scholar
  6. 6.
    Liu, H., Wang, X.: Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Opt. Commun. 284, 3895–3903 (2011) CrossRefGoogle Scholar
  7. 7.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949) MathSciNetMATHGoogle Scholar
  8. 8.
    Johnson, N.F., Jajodia, S.: Exploring steganography: seeing the unseen. IEEE. Comput. J. 31(2), 26–34 (1998) CrossRefGoogle Scholar
  9. 9.
    Tirkel, A.Z., Van Schyndel, R.G., Osborn, D.F.: A two-dimensional digital watermark. In: Int. Conf. on Image Processing, Brisbane, Australia, vol. 2, pp. 86–90 (1994) Google Scholar
  10. 10.
    Koch, E., Zhao, J.: Towards robust and hidden image copyright labeling. In: Proc. of IEEE Workshop on Nonlinear Signal and Image Processing, New York, pp. 452–455 (1995) Google Scholar
  11. 11.
    Gruhl, D., Bender, W., Morimoto, M.: Techniques for data hiding. IBM Syst. J. 35(4), 16–35 (1996) Google Scholar
  12. 12.
    Davern, P., Scott, M.: Fractal based image steganography. In: Information Hiding, First International Workshop. Lecture Notes in Computer Science, pp. 279–294. Springer, Berlin (1996) CrossRefGoogle Scholar
  13. 13.
    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 8(6), 1259–1284 (1998) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kocarev, L.: Chaos-based cryptography: a brief overview. IEEE Circuits Syst. Mag. 1(3), 6–21 (2001) CrossRefGoogle Scholar
  15. 15.
    Wang, X.-Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62(3), 615–621 (2010) MATHCrossRefGoogle Scholar
  16. 16.
    Ashtiyani, M., Birgani, P.M., Hosseini, H.M.: Chaos-based medical image encryption using symmetric cryptography. In: Proceedings of IEEE 3rd International Conference on Information and Communication Technologies: From Theory to Applications (ICTTA 2008), Damascus, Syria, pp. 7–11 (2008) Google Scholar
  17. 17.
    Bailey, K., Curran, K.: An evaluation of image based steganography methods. Multimed. Tools Appl. 30(1), 55–88 (2006) CrossRefGoogle Scholar
  18. 18.
    Beşdok, E.: Hiding information in multispectral spatial images. AEÜ, Int. J. Electron. Commun. 59(1), 15–24 (2005) CrossRefGoogle Scholar
  19. 19.
    Chang, C.C., Lin, C.C., Tseng, C.S., Tai, W.L.: Reversible hiding in DCT-based compressed images. Inf. Sci. 177(13), 68–86 (2007) Google Scholar
  20. 20.
    Cokal, C., Solak, E.: Cryptanalysis of a chaos-based image encryption algorithm. Phys. Lett. A 373(15), 1357–1360 (2009) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Denis, T.S.: Cryptography for Developers. Syngress, Waltham (2006) Google Scholar
  22. 22.
    Kocarev, L., Halle, K.S., Eckert, K., Chua, L.O.: Experimental demonstration of secure communication via chaotic synchronization. Int. J. Bifurc. Chaos 2(1), 709–713 (1992) MATHGoogle Scholar
  23. 23.
    Fridrich, J., Goljan, M., Soukal, D.: Perturbed quantization steganography. Multimed. Secur. J. 11(2), 98–107 (2005) CrossRefGoogle Scholar
  24. 24.
    Gao, T., Chen, Z.: A new image encryption algorithm based on hyper-chaos. Phys. Lett. A 372(4), 394–400 (2008) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Dedieu, H., Kennedy, M.P., Hasler, M.: Chaos shift-keying: Modulation and demodulation of a chaotic character using self synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 40, 634–642 (1993) CrossRefGoogle Scholar
  26. 26.
    Dyson, F.J., Falk, H.: Period of a discrete cat mapping. Am. J. Math. 99(2), 603–624 (1992) MathSciNetMATHGoogle Scholar
  27. 27.
    Liu, H., Wang, X.: Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 59(10), 3320–3327 (2010) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Avadhani, P.S., Lalitha Bhaskari, D.: A blind scheme watermarking algorithm for data hiding in RGB images using godelization technique under spatial domain. In: ICIW Conference, China (2010) Google Scholar
  29. 29.
    Rhee, M.Y.: Cryptography and Secure Communications. McGraw-Hill, New York (1994) MATHGoogle Scholar
  30. 30.
    Konfelder, L.M.: On the signature reblocking problem in public-key cryptosystem. Commun. ACM 21(2), 156–190 (1978) Google Scholar
  31. 31.
    Johnson, N., Jajodia, S.: Steganalysis of images created using current steganography software. In: Proc. Second Workshop on Information Hiding, Portland, pp. 273–289 (1998) Google Scholar
  32. 32.
    Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for data hiding. IBM Syst. J. 35(5), 313–336 (1996) CrossRefGoogle Scholar
  33. 33.
    Wu, Y.T., Shih, F.Y.: Genetic algorithm based methodology for breaking the steganalytic systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 36(1), 24–31 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Artificial IntelligenceMashhad Branch, Islamic Azad UniversityMashhadIran

Personalised recommendations