Nonlinear Dynamics

, Volume 69, Issue 3, pp 1311–1322 | Cite as

Adaptive control of a chaotic permanent magnet synchronous motor

Original Paper

Abstract

This paper proposes a simple adaptive controller design method for a chaotic permanent magnet synchronous motor (PMSM) based on the sliding mode control theory which has given an effective means to design robust controllers for nonlinear systems with bounded uncertainties. The proposed sliding mode adaptive controller does not require any information on the PMSM parameter and load torque values, thus it is insensitive to model parameter and load torque variations. Simulation results are given to verify that the proposed method can be successfully used to control a chaotic PMSM under model parameter and load torque variations.

Keywords

Permanent magnet synchronous motor (PMSM) Chaos Adaptive control Sliding mode control Nonlinear system Uncertainty 

References

  1. 1.
    Zhang, J., Tang, W.: Control and synchronization for a class of new chaotic systems via liner feedback. Nonlinear Dyn. 58, 675–686 (2009) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Siewe, M.S., Yamgoue, S.B., Kakmeni, F.M.M., Tchawoua, C.: Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379–389 (2010) MATHCrossRefGoogle Scholar
  3. 3.
    Kwuimy, C.A.K., Woafo, P.: Dynamics, chaos and synchronization of self-sustained electromechanical systems with clamped-free flexible arm. Nonlinear Dyn. 53, 201–213 (2008) MATHCrossRefGoogle Scholar
  4. 4.
    Njah, A.N.: Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn. 61, 1–9 (2010) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Fradkov, A.L., Evans, R.J.: Control of chaos: Methods and applications in engineering. Annu. Rev. Control 29, 33–56 (2005) CrossRefGoogle Scholar
  6. 6.
    Yassen, M.T.: Chaos control of chaotic dynamical system using backstepping design. Chaos Solitons Fractals 27, 537–548 (2006) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Tanaka, K., Ikeda, T., Wang, H.O.: A unified approach to controlling chaos via LMI-based fuzzy control system design. IEEE Trans. Circuits Syst. I 45, 1021–1040 (1998) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Pennacchi, P.: Nonlinear effects due to electromechanical interaction in generators with smooth poles. Nonlinear Dyn. 57, 607–622 (2009) MATHCrossRefGoogle Scholar
  9. 9.
    Chau, K.T., Chen, J.H.: Modeling, analysis, and experimentation of chaos in a switched reluctance drive system. IEEE Trans. Circuits Syst. I 50, 712–716 (2003) CrossRefGoogle Scholar
  10. 10.
    Gao, Y., Chau, K.T.: Hopf bifurcation and chaos in synchronous reluctance motor drives. IEEE Trans. Energy Convers. 19, 296–302 (2004) CrossRefGoogle Scholar
  11. 11.
    Ge, Z.-M., Lin, G.-H.: The complete, lag and anticipated synchronization of a BLDCM chaotic system. Chaos Solitons Fractals 34, 740–764 (2007) CrossRefGoogle Scholar
  12. 12.
    Li, Z., Park, J.B., Joo, Y.H., Zhang, B., Chen, G.: Bifurcations and chaos in a permanent-magnet synchronous motor. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49, 383–387 (2002) CrossRefGoogle Scholar
  13. 13.
    Jing, Z., Yu, C., Chen, G.: Complex dynamics in a permanent-magnet synchronous motor model. Chaos Solitons Fractals 22, 831–848 (2004) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Zhang, B., Li, Z., Mao, Z.: Entrainment and migration control of permanent-magnet synchronous motor system. J. Control Theory Appl. 19, 53–56 (2002) MATHGoogle Scholar
  15. 15.
    Petrovic, V., Ortega, R., Stankovic, A.M.: Interconnection and damping assignment approach of PM synchronous motors. IEEE Trans. Control Syst. Technol. 9, 811–820 (2001) CrossRefGoogle Scholar
  16. 16.
    Ren, H., Liu, D.: Nonlinear feedback control of chaos in permanent magnet synchronous motor. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 53, 45–50 (2006) CrossRefGoogle Scholar
  17. 17.
    Zribi, M., Oteafy, A., Smaoui, N.: Controlling chaos in the permanent magnet synchronous motor. Chaos Solitons Fractals 41, 1266–1276 (2009) CrossRefGoogle Scholar
  18. 18.
    Loria, A.: Robust linear control of (chaotic) permanent-magnet synchronous motors with uncertainties. IEEE Trans. Circuits Syst. I, Regul. Pap. 56, 2109–2122 (2009) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Slotine, J.-J., Li, W.: Applied Nonlinear Control. Prentice Hall, New York (1991) MATHGoogle Scholar
  20. 20.
    Ioannou, P.A., Sun, J.: Robust Adaptive Control. Prentice Hall, New York (1995) Google Scholar
  21. 21.
    Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22, 212–222 (1977) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Astrom, K.J., Witternmark, B.: Computer-Controlled Systems—Theory and Design. Prentice Hall, New York (1990) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Division of EEEDongguk Univ.-SeoulSeoulKorea

Personalised recommendations