Nonlinear Dynamics

, Volume 67, Issue 1, pp 129–138

Dynamics and adaptive control of a Duopoly advertising model based on heterogeneous expectations

Original Paper

Abstract

This paper discusses a duopoly advertising model based on heterogeneous expectations. Firstly, it points out the unstable region of Nash equilibrium and its influencing factors by analyzing the stability of the improved model. Secondly, it applies the adaptive control method to the chaos of the duopoly advertising model. The control aims are to bring this system into the instability equilibrium point by using minor disturbance of the control parameter. The result of theoretical study and numerical simulation illuminates that the method could successfully lead the chaos track to low cycle track. Moreover, scope of the convergent condition and control intensity are given.

Keywords

Advertising model Heterogeneous expectations Adaptive control Bifurcation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agiza, H.N., Elsadany, A.A.: Nonlinear dynamics in the Cournot duopoly game with heterogeneous players. Physica A 320, 512–524 (2003) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Agiza, H.N., Elsadany, A.A.: Chaotic dynamics in nonlinear duopoly game with heterogeneous players. Appl. Math. Comput. 149, 843–860 (2004) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Agiza, H.N., Hegazi, A.S., Elsadany, A.A.: The dynamics of Bowley’s model with bounded rationality. Chaos Solitons Fractals 12, 1705–1717 (2001) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bischi, G.I., Kopel, M.: Equilibrium selection in a nonlinear duopoly game with adaptive expectations. J. Econ. Behav. Organ. 46, 73–100 (2001) CrossRefGoogle Scholar
  5. 5.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Pyragas, K., Pyragas, V., Kiss, I.I., Hudson, J.L.: Adaptive control of unknown unstable steady states of dynamics systems. Phys. Rev. E 70, 026215 (2004) Google Scholar
  7. 7.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992) CrossRefGoogle Scholar
  8. 8.
    Agiza, H.N., Hegazi, A.Z., Elsadany, A.A.: Complex dynamics and synchronization of a duopoly game with bounded rationality. Math. Comput. Simul. 58, 133–146 (2002) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bischi, G.I., Gardini, L.S.: Synchronization, intermittency and critical curves in a duopoly game. Math. Comput. Simul. 44, 559–585 (1998) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Yao, H.X., Wu, C.Y., Jiang, D.P.: Chaos control in an investment model with straight-line stabilization method. Nonlinear Anal., Real World Appl. 9, 651–662 (2008) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Du, J.G., Huang, T.W., Sheng, Z.H.: Analysis of decision-making in economic chaos control. Nonlinear Anal., Real World Appl. 4, 2493–2501 (2009) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhu, J.D., Tian, Y.P.: Nonlinear recursive delayed feedback control for chaotic discrete-time systems. Phys. Lett. A 4(21), 295–300 (2003) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kopel, M.: Simple and complex adjustment dynamics in Cournot duopoly model. Chaos Solitons Fractals 12, 2031–2048 (1996) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of ScienceJiangsu UniversityZhenjiangChina
  2. 2.Business Administration AcademyJiangsu UniversityZhenjiangChina

Personalised recommendations