Nonlinear Dynamics

, Volume 67, Issue 1, pp 89–96 | Cite as

Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system

Original Paper

Abstract

This paper studies the problem of the circuit implementation and the finite-time synchronization for the 4D (four-dimensional) Rabinovich hyperchaotic system. The electronic circuit of 4D hyperchaotic system is designed. It is rigorously proven that global finite-time synchronization can be achieved for hyperchaotic systems which have uncertain parameters.

Keywords

Hyperchaotic system Circuit implementation Finite-time synchronization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  2. 2.
    Sparrow, C.: The Lorenz Equations: Bifurcation, Chaos, and Strange Attractor. Springer, New York (1982) CrossRefGoogle Scholar
  3. 3.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976) CrossRefGoogle Scholar
  4. 4.
    Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos Appl. Sci. Eng. 9, 1465–1466 (1999) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 659–661 (2002) MATHCrossRefGoogle Scholar
  7. 7.
    Liu, C., Liu, T., Liu, L., et al.: A new chaotic attractor. Chaos Solitons Fractals 22, 1031–1038 (2004) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Yang, Q., Liu, Y.: A hyperchaotic system from a chaotic system with one saddle and two stable node-foci. J. Math. Anal. Appl. 360, 293–306 (2009) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Liu, Y., Yang, Q.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Anal., Real World Appl. 11, 2563–2572 (2010) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Liu, Y., Yang, Q., Pang, G.: A hyperchaotic system from the Rabinovich system. J. Comput. Appl. Math. 234, 101–113 (2010) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Liu, Y., Pang, G.: The basin of attraction of the Liu system. Commun. Nonlinear Sci. Numer. Simul. 16, 2065–2071 (2011) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Haimo, V.T.: Finite time controllers. SIAM J. Control Optim. 24, 760–770 (1986) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Sugawara, T., Tachikawa, M., Tsukamoto, T., Shimizu, T.: Observation of synchronization in laser chaos. Phys. Rev. Lett. 72, 3502–3505 (1994) CrossRefGoogle Scholar
  15. 15.
    Bhat, S., Bernstein, D.: Finite-time stability of homogeneous systems. In: Proceedings of ACC, Albuquerque, NM, pp. 2513–2514 (1997) Google Scholar
  16. 16.
    Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal. TMA 7(11), 1163–1173 (1983) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Millerioux, G., Mira, C.: Finite-time global chaos synchronization for piecewise linear maps. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48, 111–116 (2001) MATHCrossRefGoogle Scholar
  18. 18.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, New Jersey (2002), pp. 102–103 MATHGoogle Scholar
  19. 19.
    Li, S.H., Tian, Y.P.: Finite time synchronization of chaotic systems. Chaos Solitons Fractals 15, 303–310 (2003) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Tao, C.H., Xiong, H.X., Hu, F.: Two novel synchronization criterions for a unified chaotic system. Chaos Solitons Fractals 27, 115–120 (2006) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Wang, F.Q., Liu, C.X.: Synchronization of unified chaotic system based on passive control. Physica D 225, 55–60 (2007) MathSciNetMATHGoogle Scholar
  22. 22.
    Wang, H., Han, Z., Xie, Q., et al.: Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlinear Anal., Real World Appl. 10, 2842–2849 (2009) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Yu, W.: Finite-time stabilization of three-dimensional chaotic systems based on CLF. Phys. Lett. A 374, 3021–3024 (2010) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Buscarino, A., Fortuna, L., Frasca, M.: Experimental robust synchronization of hyperchaotic circuits. Physica D 238, 1917–1922 (2009) MATHGoogle Scholar
  25. 25.
    Zheng, S., Dong, G., Bi, Q.: Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 15, 3547–3556 (2010) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Sudheer, K. Sebastian, Sabir, M.: Modified function projective synchronization of hyperchaotic systems through Open-Plus-Closed-Loop coupling. Phys. Lett. A 374, 2017–2023 (2010) CrossRefGoogle Scholar
  27. 27.
    Li, Y.: Some new less conservative criteria for impulsive synchronization of a hyperchaotic Lorenz system based on small impulsive signals. Nonlinear Anal., Real World Appl. 11, 713–719 (2010) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Zhu, C.: Adaptive synchronization of two novel different hyperchaotic systems with partly uncertain parameters. Appl. Math. Comput. 215, 557–561 (2009) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Chen, J., et al.: Projective and lag synchronization of a novel hyperchaotic system via impulsive control. Commun. Nonlinear Sci. Numer. Simul. 16, 2033–2040 (2011) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Ma, J., Zhang, A., Xia, Y.-F., Zhang, L.-P.: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215, 3318–3326 (2010) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Fu, G., Li, Z.: Robust adaptive anti-synchronization of two different hyperchaotic systems with external uncertainties. Commun. Nonlinear Sci. Numer. Simul. 16, 395–401 (2011) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Haeri, M., Dehghani, M.: Modified impulsive synchronization of hyperchaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15, 728–740 (2010) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Wu, X., Wang, H., Lu, H.: Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Anal., Real World Appl. 12, 1288–1299 (2011) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Lan, Y., Li, Q.: Chaos synchronization of a new hyperchaotic system. Appl. Math. Comput. 217, 2125–2132 (2010) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Sudheer, K. Sebastian, Sabir, M.: Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 15, 4058–4064 (2010) CrossRefGoogle Scholar
  36. 36.
    Mahmoud, G.M., Mahmoud, E.E.: Synchronization and control of hyperchaotic complex Lorenz system. Math. Comput. Simul. 80, 2286–2296 (2010) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Mossa Al-Sawalha, M., Noorani, M.S.M.: Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 15, 1036–1047 (2010) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Wang, H., Han, Z., Mo, Z.: Synchronization of hyperchaotic systems via linear control. Commun. Nonlinear Sci. Numer. Simul. 15, 1910–1920 (2010) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceYulin Normal UniversityYulinP.R. China

Personalised recommendations