Nonlinear Dynamics

, Volume 67, Issue 1, pp 71–87

# Dynamic instability of inclined cables under combined wind flow and support motion

• Angelo Luongo
• Daniele Zulli
Original Paper

## Abstract

In this paper an inclined nearly taut stay, belonging to a cable-stayed bridge, is considered. It is subject to a prescribed motion at one end, caused by traveling vehicles, and embedded in a wind flow blowing simultaneously with rain. The cable is modeled as a non-planar, nonlinear, one-dimensional continuum, possessing torsional and flexural stiffness. The lower end of the cable is assumed to undergo a vertical sinusoidal motion of given amplitude and frequency. The wind flow is assumed uniform in space and constant in time, acting on the cable along which flows a rain rivulet. The imposed motion is responsible for both external and parametric excitations, while the wind flow produces aeroelastic instability. The relevant equations of motion are discretized via the Galerkin method, by taking one in-plane and one out-of-plane symmetric modes as trial functions. The two resulting second-order, non-homogeneous, time-periodic, ordinary differential equations are coupled and contain quadratic and cubic nonlinearities, both in the displacements and velocities. They are tackled by the Multiple Scale perturbation method, which leads to first-order amplitude-phase modulation equations, governing the slow dynamics of the cable. The wind speed, the amplitude of the support motion and the internal and external frequency detunings are set as control parameters. Numerical path-following techniques provide bifurcation diagrams as functions of the control parameters, able to highlight the interactions between in-plane and out-of-plane motions, as well as the effects of the simultaneous presence of the three sources of excitation.

## Keywords

Inclined cable Support motion Aeroelastic instability External excitation Parametric excitation

## References

1. 1.
Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R. Soc. Lond. A 341, 299–315 (1974)
2. 2.
Irvine, H.M.: Cable Structures. MIT Press, Cambridge (1981) Google Scholar
3. 3.
Triantafyllou, M.S.: The dynamics of taut inclined cables. Q. J. Mech. Appl. Math. 37(3), 421–440 (1984)
4. 4.
Hagedorn, P., Schäfer, B.: On non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 15(4–5), 333–340 (1980)
5. 5.
Luongo, A., Rega, G., Vestroni, F.: Monofrequent oscillations of a non-linear model of a suspended cable. J. Sound Vib. 82(2), 247–259 (1982)
6. 6.
Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27(2), 233–250 (1992)
7. 7.
Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182(5), 775–798 (1995)
8. 8.
Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-Linear Mech. 34, 901–924 (1999)
9. 9.
Chen, H., Zuo, D., Zhang, Z., Xu, Q.: Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations. Nonlinear Dyn. (2010). doi:
10. 10.
Rega, G., Alaggio, R., Benedettini, F.: Experimental investigation of the nonlinear response of a hanging cable. Part I. Local analysis. Nonlinear Dyn. 14(2), 89–117 (1997)
11. 11.
Rega, G.: Nonlinear vibrations of suspended cables. Part I. Modeling and analysis. Appl. Mech. Rev. 57(6), 443–478 (2004)
12. 12.
Luongo, A., Paolone, A., Piccardo, G.: Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica 33(3), 229–242 (1998)
13. 13.
Luongo, A., Piccardo, G.: A continuous approach to the aeroelastic stability of suspended cables in 1:2 internal resonance. J. Vib. Control 14(1–2), 135–157 (2008)
14. 14.
Luongo, A., Piccardo, G.: On the influence of the torsional stiffness on non-linear galloping of suspended cables. In: Proc. 2nd ENOC, vol. 1, pp. 273–276, Prague, Czech Republic (1996) Google Scholar
15. 15.
Yu, P., Desai, Y.M., Popplewell, N., Shah, A.H.: Three-degree-of-freedom model for galloping. Part II. Solutions. J. Eng. Mech. 119(12), 2426–2448 (1993)
16. 16.
Mcconnel, K.G., Chang, C.N.: A study of the axial-torsional coupling effect on a sagged transmission line. Exp. Mech. 1, 324–329 (1986)
17. 17.
White, W.N., Venkatasubramanian, S., Lynch, P.M., Huang, C.D.: The equations of motion for the torsional and bending vibrations of a stranded cabl. Appl. Mech. Div., 91-WA/APM-19, 1993 Google Scholar
18. 18.
Ricciardi, G., Saitta, F.: A continuous vibration analysis model for cables with sag and bending stiffness. Eng. Struct. 30, 1459–1472 (2008)
19. 19.
Treyssède, F.: Vibration analysis of horizontal self-weighted beams and cables with bending stiffness subjected to thermal loads. J. Sound Vib. 329, 1536–1552 (2010)
20. 20.
Ceballos, M.A., Prato, C.A.: Determination of the axial force on stay cables accounting for their bending stiffness and rotational end restraints by free vibration tests. J. Sound Vib. 317, 127–141 (2008)
21. 21.
Hijmissen, J.W., van den Heuvel, N.W., van Horssen, W.T.: On the effect of the bending stiffness on the damping properties of a tensioned cable with an attached tuned-mass-damper. Eng. Struct. 31, 1276–1285 (2009)
22. 22.
Lu, C.L., Perkins, N.C.: Nonlinear spatial equilibria and stability of cables under uni-axial torque and thrust. J. Appl. Mech. 61, 879–886 (1994)
23. 23.
Diana, G., Bruni, S., Cheli, F., Fossati, F., Manenti, A.: Dynamic analysis of the transmission line crossing Lago de Maracaibo. J. Wind Eng. Ind. Aerodyn. 74–76, 977–986 (1998)
24. 24.
Luongo, A., Zulli, D., Piccardo, G.: A linear curved-beam model for the analysis of galloping in suspended cables. J. Mech. Mater. Struct. 2(4), 675–694 (2007)
25. 25.
Luongo, A., Zulli, D., Piccardo, G.: Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J. Sound Vib. 315(3), 375–393 (2008)
26. 26.
Luongo, A., Zulli, D., Piccardo, G.: On the effect of twist angle on nonlinear galloping of suspended cables. Compos. Struct. 87, 1003–1014 (2009)
27. 27.
Novak, M.: Aeroelastic galloping of prismatic bodies. J. Eng. Mech. 95(EM1), 115–141 (1969) Google Scholar
28. 28.
Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I. Theoretical formulation and model validation. Nonlinear Dyn. 48(3), 231–252 (2007)
29. 29.
Srinil, N., Rega, G.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II. Internal resonance activation, reduced-order models and nonlinear normal modes. Nonlinear Dyn. 48(3), 253–274 (2007)
30. 30.
Srinil, N., Rega, G., Chucheepsakul, S.: Large amplitude three-dimensional free vibrations of inclined sagged elastic cables. Nonlinear Dyn. 33(2), 129–154 (2003)
31. 31.
Nielsen, S.R.K., Kirkegaard, P.H.: Super and combinatorial harmonic response of flexible elastic cables with small sag. J. Sound Vib. 251(1), 79–102 (2002)
32. 32.
Berlioz, A., Lamarque, C.-H.: A non-linear model for the dynamics of an inclined cable. J. Sound Vib. 279(3–5), 619–639 (2005)
33. 33.
Wang, L., Zhao, Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 237(1–2), 121–133 (2009)
34. 34.
Ibrahim, R.A.: Nonlinear vibrations of suspended cables. Part III. Random excitation and interaction with fluid flow. Appl. Mech. Rev. 57(6), 515–549 (2004)
35. 35.
Matsumoto, M., Saitoh, T., Kitazawa, M., Shirato, H., Nishizaki, T.: Response characteristics of rain-wind induced vibration of stay-cables of cable-stayed bridges. J. Wind Eng. Ind. Aerodyn. 57, 323–333 (1995)
36. 36.
Wang, L., Xu, Y.L.: Wind-rain-induced vibration of cable: an analytical model (1). Int. J. Solids Struct. 40, 1265–1280 (2003)
37. 37.
Macdonald, J.H.G., Larose, G.L.: Two-degree-of-freedom inclined cable galloping. Part 1. General formulation and solution for perfectly tuned system. J. Wind Eng. Ind. Aerodyn. 96, 291–307 (2008)
38. 38.
Szabelski, K., Warminski, J.: Parametric self-excited non-linear system vibrations analysis with inertial excitation. Int. J. Non-Linear Mech. 30(2), 179–189 (1995)
39. 39.
Eissa, M., Amer, Y.A.: Vibration control of a cantilever beam subject to both external and parametric excitation. Appl. Math. Comput. 152(3), 611–619 (2004)
40. 40.
Abdelhafez, H.M.: Resonance of a nonlinear forced system with two-frequency parametric and self-excitations. Math. Comput. Simul. 66(1), 69–83 (2004)
41. 41.
Szabelski, K., Warminski, J.: Vibration of a non-linear self-excited system with two degrees of freedom under external and parametric excitation. Nonlinear Dyn. 14(1), 23–36 (1997)
42. 42.
Warminski, J.: Nonlinear normal modes of a self-excited system driven by parametric and external excitations. Nonlinear Dyn. 61(4), 677–689 (2010)
43. 43.
Abdel-Rohman, M.: Effect of unsteady wind flow on galloping of tall prismatic structures. Nonlinear Dyn. 26, 231–252 (2001)
44. 44.
Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)
45. 45.
Verhulst, F.: Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics. Springer, New York (2005)
46. 46.
Nayfeh, A.H., Chin, C.M.: Perturbation Methods with Mathematica. Dynamic Press Inc., Blacksburg (1999) Google Scholar
47. 47.
Khanin, R., Cartmell, M., Gilbert, A.: A computerized implementation of the multiple scales perturbation method using mathematica. Compos. Struct. 76, 565–575 (2000)
48. 48.
Doedel, E.J., Oldeman, B.E.: AUTO-07P: continuation and bifurcation software for ordinary differential equation (2009) Google Scholar