Nonlinear Dynamics

, Volume 67, Issue 1, pp 71–87 | Cite as

Dynamic instability of inclined cables under combined wind flow and support motion

  • Angelo Luongo
  • Daniele Zulli
Original Paper


In this paper an inclined nearly taut stay, belonging to a cable-stayed bridge, is considered. It is subject to a prescribed motion at one end, caused by traveling vehicles, and embedded in a wind flow blowing simultaneously with rain. The cable is modeled as a non-planar, nonlinear, one-dimensional continuum, possessing torsional and flexural stiffness. The lower end of the cable is assumed to undergo a vertical sinusoidal motion of given amplitude and frequency. The wind flow is assumed uniform in space and constant in time, acting on the cable along which flows a rain rivulet. The imposed motion is responsible for both external and parametric excitations, while the wind flow produces aeroelastic instability. The relevant equations of motion are discretized via the Galerkin method, by taking one in-plane and one out-of-plane symmetric modes as trial functions. The two resulting second-order, non-homogeneous, time-periodic, ordinary differential equations are coupled and contain quadratic and cubic nonlinearities, both in the displacements and velocities. They are tackled by the Multiple Scale perturbation method, which leads to first-order amplitude-phase modulation equations, governing the slow dynamics of the cable. The wind speed, the amplitude of the support motion and the internal and external frequency detunings are set as control parameters. Numerical path-following techniques provide bifurcation diagrams as functions of the control parameters, able to highlight the interactions between in-plane and out-of-plane motions, as well as the effects of the simultaneous presence of the three sources of excitation.


Inclined cable Support motion Aeroelastic instability External excitation Parametric excitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R. Soc. Lond. A 341, 299–315 (1974) CrossRefGoogle Scholar
  2. 2.
    Irvine, H.M.: Cable Structures. MIT Press, Cambridge (1981) Google Scholar
  3. 3.
    Triantafyllou, M.S.: The dynamics of taut inclined cables. Q. J. Mech. Appl. Math. 37(3), 421–440 (1984) zbMATHCrossRefGoogle Scholar
  4. 4.
    Hagedorn, P., Schäfer, B.: On non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 15(4–5), 333–340 (1980) zbMATHCrossRefGoogle Scholar
  5. 5.
    Luongo, A., Rega, G., Vestroni, F.: Monofrequent oscillations of a non-linear model of a suspended cable. J. Sound Vib. 82(2), 247–259 (1982) CrossRefGoogle Scholar
  6. 6.
    Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27(2), 233–250 (1992) zbMATHCrossRefGoogle Scholar
  7. 7.
    Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182(5), 775–798 (1995) CrossRefGoogle Scholar
  8. 8.
    Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-Linear Mech. 34, 901–924 (1999) CrossRefGoogle Scholar
  9. 9.
    Chen, H., Zuo, D., Zhang, Z., Xu, Q.: Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations. Nonlinear Dyn. (2010). doi: 10.1007/s11071-010-9750-2
  10. 10.
    Rega, G., Alaggio, R., Benedettini, F.: Experimental investigation of the nonlinear response of a hanging cable. Part I. Local analysis. Nonlinear Dyn. 14(2), 89–117 (1997) CrossRefGoogle Scholar
  11. 11.
    Rega, G.: Nonlinear vibrations of suspended cables. Part I. Modeling and analysis. Appl. Mech. Rev. 57(6), 443–478 (2004) CrossRefGoogle Scholar
  12. 12.
    Luongo, A., Paolone, A., Piccardo, G.: Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica 33(3), 229–242 (1998) zbMATHCrossRefGoogle Scholar
  13. 13.
    Luongo, A., Piccardo, G.: A continuous approach to the aeroelastic stability of suspended cables in 1:2 internal resonance. J. Vib. Control 14(1–2), 135–157 (2008) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Luongo, A., Piccardo, G.: On the influence of the torsional stiffness on non-linear galloping of suspended cables. In: Proc. 2nd ENOC, vol. 1, pp. 273–276, Prague, Czech Republic (1996) Google Scholar
  15. 15.
    Yu, P., Desai, Y.M., Popplewell, N., Shah, A.H.: Three-degree-of-freedom model for galloping. Part II. Solutions. J. Eng. Mech. 119(12), 2426–2448 (1993) CrossRefGoogle Scholar
  16. 16.
    Mcconnel, K.G., Chang, C.N.: A study of the axial-torsional coupling effect on a sagged transmission line. Exp. Mech. 1, 324–329 (1986) CrossRefGoogle Scholar
  17. 17.
    White, W.N., Venkatasubramanian, S., Lynch, P.M., Huang, C.D.: The equations of motion for the torsional and bending vibrations of a stranded cabl. Appl. Mech. Div., 91-WA/APM-19, 1993 Google Scholar
  18. 18.
    Ricciardi, G., Saitta, F.: A continuous vibration analysis model for cables with sag and bending stiffness. Eng. Struct. 30, 1459–1472 (2008) CrossRefGoogle Scholar
  19. 19.
    Treyssède, F.: Vibration analysis of horizontal self-weighted beams and cables with bending stiffness subjected to thermal loads. J. Sound Vib. 329, 1536–1552 (2010) CrossRefGoogle Scholar
  20. 20.
    Ceballos, M.A., Prato, C.A.: Determination of the axial force on stay cables accounting for their bending stiffness and rotational end restraints by free vibration tests. J. Sound Vib. 317, 127–141 (2008) CrossRefGoogle Scholar
  21. 21.
    Hijmissen, J.W., van den Heuvel, N.W., van Horssen, W.T.: On the effect of the bending stiffness on the damping properties of a tensioned cable with an attached tuned-mass-damper. Eng. Struct. 31, 1276–1285 (2009) CrossRefGoogle Scholar
  22. 22.
    Lu, C.L., Perkins, N.C.: Nonlinear spatial equilibria and stability of cables under uni-axial torque and thrust. J. Appl. Mech. 61, 879–886 (1994) zbMATHCrossRefGoogle Scholar
  23. 23.
    Diana, G., Bruni, S., Cheli, F., Fossati, F., Manenti, A.: Dynamic analysis of the transmission line crossing Lago de Maracaibo. J. Wind Eng. Ind. Aerodyn. 74–76, 977–986 (1998) CrossRefGoogle Scholar
  24. 24.
    Luongo, A., Zulli, D., Piccardo, G.: A linear curved-beam model for the analysis of galloping in suspended cables. J. Mech. Mater. Struct. 2(4), 675–694 (2007) CrossRefGoogle Scholar
  25. 25.
    Luongo, A., Zulli, D., Piccardo, G.: Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J. Sound Vib. 315(3), 375–393 (2008) CrossRefGoogle Scholar
  26. 26.
    Luongo, A., Zulli, D., Piccardo, G.: On the effect of twist angle on nonlinear galloping of suspended cables. Compos. Struct. 87, 1003–1014 (2009) CrossRefGoogle Scholar
  27. 27.
    Novak, M.: Aeroelastic galloping of prismatic bodies. J. Eng. Mech. 95(EM1), 115–141 (1969) Google Scholar
  28. 28.
    Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I. Theoretical formulation and model validation. Nonlinear Dyn. 48(3), 231–252 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Srinil, N., Rega, G.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II. Internal resonance activation, reduced-order models and nonlinear normal modes. Nonlinear Dyn. 48(3), 253–274 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Srinil, N., Rega, G., Chucheepsakul, S.: Large amplitude three-dimensional free vibrations of inclined sagged elastic cables. Nonlinear Dyn. 33(2), 129–154 (2003) zbMATHCrossRefGoogle Scholar
  31. 31.
    Nielsen, S.R.K., Kirkegaard, P.H.: Super and combinatorial harmonic response of flexible elastic cables with small sag. J. Sound Vib. 251(1), 79–102 (2002) CrossRefGoogle Scholar
  32. 32.
    Berlioz, A., Lamarque, C.-H.: A non-linear model for the dynamics of an inclined cable. J. Sound Vib. 279(3–5), 619–639 (2005) CrossRefGoogle Scholar
  33. 33.
    Wang, L., Zhao, Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 237(1–2), 121–133 (2009) CrossRefGoogle Scholar
  34. 34.
    Ibrahim, R.A.: Nonlinear vibrations of suspended cables. Part III. Random excitation and interaction with fluid flow. Appl. Mech. Rev. 57(6), 515–549 (2004) CrossRefGoogle Scholar
  35. 35.
    Matsumoto, M., Saitoh, T., Kitazawa, M., Shirato, H., Nishizaki, T.: Response characteristics of rain-wind induced vibration of stay-cables of cable-stayed bridges. J. Wind Eng. Ind. Aerodyn. 57, 323–333 (1995) CrossRefGoogle Scholar
  36. 36.
    Wang, L., Xu, Y.L.: Wind-rain-induced vibration of cable: an analytical model (1). Int. J. Solids Struct. 40, 1265–1280 (2003) zbMATHCrossRefGoogle Scholar
  37. 37.
    Macdonald, J.H.G., Larose, G.L.: Two-degree-of-freedom inclined cable galloping. Part 1. General formulation and solution for perfectly tuned system. J. Wind Eng. Ind. Aerodyn. 96, 291–307 (2008) CrossRefGoogle Scholar
  38. 38.
    Szabelski, K., Warminski, J.: Parametric self-excited non-linear system vibrations analysis with inertial excitation. Int. J. Non-Linear Mech. 30(2), 179–189 (1995) zbMATHCrossRefGoogle Scholar
  39. 39.
    Eissa, M., Amer, Y.A.: Vibration control of a cantilever beam subject to both external and parametric excitation. Appl. Math. Comput. 152(3), 611–619 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Abdelhafez, H.M.: Resonance of a nonlinear forced system with two-frequency parametric and self-excitations. Math. Comput. Simul. 66(1), 69–83 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Szabelski, K., Warminski, J.: Vibration of a non-linear self-excited system with two degrees of freedom under external and parametric excitation. Nonlinear Dyn. 14(1), 23–36 (1997) zbMATHCrossRefGoogle Scholar
  42. 42.
    Warminski, J.: Nonlinear normal modes of a self-excited system driven by parametric and external excitations. Nonlinear Dyn. 61(4), 677–689 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Abdel-Rohman, M.: Effect of unsteady wind flow on galloping of tall prismatic structures. Nonlinear Dyn. 26, 231–252 (2001) CrossRefGoogle Scholar
  44. 44.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979) zbMATHGoogle Scholar
  45. 45.
    Verhulst, F.: Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics. Springer, New York (2005) zbMATHGoogle Scholar
  46. 46.
    Nayfeh, A.H., Chin, C.M.: Perturbation Methods with Mathematica. Dynamic Press Inc., Blacksburg (1999) Google Scholar
  47. 47.
    Khanin, R., Cartmell, M., Gilbert, A.: A computerized implementation of the multiple scales perturbation method using mathematica. Compos. Struct. 76, 565–575 (2000) CrossRefGoogle Scholar
  48. 48.
    Doedel, E.J., Oldeman, B.E.: AUTO-07P: continuation and bifurcation software for ordinary differential equation (2009) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.DISATUniversity of L’AquilaL’Aquila (AQ)Italy

Personalised recommendations