Advertisement

Nonlinear Dynamics

, Volume 66, Issue 4, pp 831–837 | Cite as

Adaptive synchronization of fractional-order chaotic systems via a single driving variable

  • Ruoxun Zhang
  • Shiping Yang
Original Paper

Abstract

This letter investigates the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on sliding mode variable structure control theory and adaptive control technique, a single-state adaptive-feedback controller containing a novel fractional integral sliding surface is developed to synchronize a class of fractional-order chaotic systems. The present controller, which only contains a single driving variable, is simple both in design and implementation. Simulation results for three fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.

Keywords

Sliding mode control Fractional-order chaotic system Fractional integral sliding surface Adaptive synchronization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991) CrossRefGoogle Scholar
  2. 2.
    Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional power. IEEE Trans. Autom. Control 29, 441–444 (1984) zbMATHCrossRefGoogle Scholar
  3. 3.
    Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. Interfacial Electrochem. 33, 253–265 (1971) Google Scholar
  4. 4.
    Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971) Google Scholar
  5. 5.
    Mandelbrot, B., Van Ness, J.W.: Fractional. Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Oustaloup, A.: La dérivation non entière: theorie, synthèse et applications. Editions Hermes, Paris (1995) zbMATHGoogle Scholar
  7. 7.
    Podlubny, I.: Fractional-order systems and PI λ D μ-controllers. IEEE Trans. Autom. Control 44, 208–214 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Linares, H., Baillot, Ch., Oustaloup, A., Ceyral, Ch.: Generation of a fractal ground: application in robotics. In: International Congress in IEEE-SMC CESA’96 IMACS Multiconf., Lille, July 1996 Google Scholar
  9. 9.
    Duarte, F.B.M., Macado, J.A.T.: Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29, 315–342 (2002) zbMATHCrossRefGoogle Scholar
  10. 10.
    Deng, W.H., Li, C.P.: Chaos synchronization of the fractional Lü system. Physica A 353, 61–72 (2005) CrossRefGoogle Scholar
  11. 11.
    Li, C.P., Deng, W.H.: Chaos synchronization of fractional-order differential systems. Int. J. Mod. Phys. B 20, 791–803 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lu, J.G.: Nonlinear observer design to synchronize fractional-order chaotic system via a scaler transmitted signal. Physica A 359, 107–118 (2006) CrossRefGoogle Scholar
  13. 13.
    Wu, X.J., Lu, H.T., Shen, S.L.: Synchronization of a new fractional-order hyperchaotic system. Phys. Lett. A 373, 2329–2337 (2009) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhang, R.X., Yang, S.P.: Adaptive synchronization of fractional-order chaotic systems. Chin. Phys. B 19, 020510 (2010) CrossRefGoogle Scholar
  15. 15.
    Peng, G.J.: Synchronization of fractional order chaotic systems. Phys. Lett. A 363, 426 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387, 57–70 (2008) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lu, J.G.: Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Chaos Solitons Fractals 27, 519–525 (2006) zbMATHCrossRefGoogle Scholar
  18. 18.
    Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26, 1125–1133 (2005) zbMATHCrossRefGoogle Scholar
  19. 19.
    Wang, X.J., Li, J., Chen, G.R.: Chaos in the fractional order unified system and its synchronization. J. Franklin Inst. 345, 392 (2008) CrossRefGoogle Scholar
  20. 20.
    Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. CAS-I 42, 485–490 (1995) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.College of Physics Science and Information EngineeringHebei Normal UniversityShijiazhuangP.R. China
  2. 2.College of EducationXingtai UniversityXingtaiP.R. China

Personalised recommendations