Nonlinear Dynamics

, Volume 66, Issue 4, pp 707–715

Theoretical analysis and circuit implementation of a novel complicated hyperchaotic system

Original Paper

Abstract

This article presents a new hyperchaotic system of four-dimensional quadratic autonomous ordinary differential equations, which has one equilibrium point and two quadratic nonlinearities. Some basic dynamical properties are further investigated by means of Poincaré mapping, parameter phase portraits, and calculated Lyapunov exponents and power spectra. The existence of the hyperchaotic system is verified not only by theoretical analysis but also by conducting a novel fourth-order electronic circuit experiment. Various attractors of experimental results show that this 4D hyperchaotic system is different from the historically proposed system and has good engineering application prospects.

Keywords

Hyperchaotic system Poincaré map Lyapunov exponent Circuit implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 (1963) CrossRefGoogle Scholar
  2. 2.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1979) CrossRefGoogle Scholar
  3. 3.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(7), 1465 (1999) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(3), 659–661 (2002) MATHCrossRefGoogle Scholar
  5. 5.
    Lü, J., Chen, G., Cheng, D.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917 (2002) MATHCrossRefGoogle Scholar
  6. 6.
    Lü, J., Chen, G., Cheng, D.: A new chaotic system and beyond: the generalized Lorenz-like system. Int. J. Bifurc. Chaos 14(5), 1507 (2004) MATHCrossRefGoogle Scholar
  7. 7.
    Liu, C., Liu, T., Liu, K., Liu, L.: A new chaotic attractor. Chaos Solitons Fractals 22, 1031 (2004) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Liu, C., Liu, L., Liu, T., Li, P.: A new butterfly-shaped attractor of Lorenz-like system. Chaos Solitons Fractals 28, 1196–1203 (2004) Google Scholar
  9. 9.
    Liu, L., Su, Y., Liu, C.: A modified Lorenz system. Int. J. Nonlinear Sci. Numer. Simul. 7(2), 187–190 (2006) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Liu, L., Liu, C., Zhang, Y.: Experimental confirmation of a modified Lorenz system. Chin. Phys. Lett. 24, 2756–2758 (2007) CrossRefGoogle Scholar
  11. 11.
    Baier, G., Klein, M.: Maximum hyperchaos in generalized Henon maps. Phys. Lett. A 151, 281 (1990) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, Z., Yang, Y., Qi, G., Yuan, Z.: A novel hyperchaos system only with one equilibrium. Phys. Lett. A 360, 696 (2007) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, L., Zhang, Y., Liu, C.: Analysis of a novel four-dimensional hyperchaotic system. Chin. J. Phys. 46, 382 (2008) Google Scholar
  14. 14.
    Yu, S., Ma, Z., Qiu, S., Peng, S., Lin, Q.: Generation and synchronization of n-scroll chaotic and hyperchaotic attractors in fourth-order systems. Chin. Phys. 13, 317–328 (2004) CrossRefGoogle Scholar
  15. 15.
    Gamal, M.M., Mahmoud, E.E., Ahmed, M.E.: On the hyperchaotic complex Lü system. Nonlinear Dyn. 58(4), 725 (2009) MATHCrossRefGoogle Scholar
  16. 16.
    Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2–3), 155 (1979) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Meyer, Th., Bünner, M., Parisi, J.: Hyperchaos in the generalized Rössler system. Phys. Rev. E 56, 5069–5082 (1997) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nikolov, S., Clodong, S.: Hyperchaos–chaos–hyperchaos transition in modified Rössler systems. Chaos Solitons Fractals 22, 252 (2006) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Thamilmaran, K., Lakshmanan, M., Venkatesan, A.: Hyperchaos in a modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 14(1), 221 (2004) MATHCrossRefGoogle Scholar
  20. 20.
    Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü attractor via state feedback control. Physica A 364, 103–110 (2006) CrossRefGoogle Scholar
  21. 21.
    Qi, G., Wyk, M., Wyk, B., Chen, G.: On a new hyperchaotic system. Phys. Lett. A 372, 124 (2008) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Qi, G., Chen, G.: Analysis and circuit implementation of a new 4D chaotic system. Phys. Lett. A 352, 386 (2006) MATHCrossRefGoogle Scholar
  23. 23.
    Liu, C., Liu, L.: Circuit implementation of a new hyperchaos in fractional-order system. Chin. Phys. B 17(08), 2829 (2008) CrossRefGoogle Scholar
  24. 24.
    Matsumoto, T., Chua, L.O., Kobayashi, K.: Hyperchaos: laboratory experimental and numerical confirmation. IEEE Trans. Circuits Syst. 33, 1143–1147 (1986) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kapitaniak, T., Chua, L.O., Zhong, G.Q.: Experimental hyperchaos in coupled Chua’s circuits. IEEE Trans. Circuits Syst. 41, 499–503 (1994) CrossRefGoogle Scholar
  26. 26.
    Li, Y., Tang, K., Chen, G.: Hyperchaos evolved from the generalized Lorenz equation. Int. J. Circuit Theory Appl. 33, 235 (2005) MATHCrossRefGoogle Scholar
  27. 27.
    Wang, F., Liu, C.: Hyperchaos evolved from the Liu chaotic system. Chin. Phys. 15(5), 0963 (2006) CrossRefGoogle Scholar
  28. 28.
    Lü, J., Chen, G., Cheng, D.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurc. Chaos 16(4), 775–858 (2006) MATHCrossRefGoogle Scholar
  29. 29.
    Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations