Nonlinear Dynamics

, Volume 69, Issue 3, pp 771–779 | Cite as

Complex projective synchronization in coupled chaotic complex dynamical systems

  • Zhaoyan Wu
  • Jinqiao Duan
  • Xinchu Fu
Original Paper


In previous papers, the projective factors are always chosen as real numbers, real matrices, or even real-valued functions, which means the coupled systems evolve in the same or inverse direction simultaneously. However, in many practical situations, the drive-response systems may evolve in different directions with a constant intersection angle. Therefore, the projective synchronization with respect to a complex factor, called complex projective synchronization (CPS), should be taken into consideration. In this paper, based on Lyapunov stability theory, three typical chaotic complex dynamical systems are considered and the corresponding controllers are designed to achieve the complex projective synchronization. Further, an adaptive control method is adopted to design a universal controller for partially linear systems. Numerical examples are provided to show the effectiveness of the proposed method.


Complex projective synchronization Complex dynamical system Chaotic Adaptive control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Pyragas, K.: Synchronization of coupled time-delay systems: analytical estimations. Phys. Rev. E 58, 3067–3071 (1998) CrossRefGoogle Scholar
  4. 4.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Li, C., Liao, X., Wong, K.: Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Physica D 194, 187–202 (2004) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Wu, X., Wang, H., Lu, H.: Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Anal., Real World Appl. 12, 1288–1299 (2011) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Kwon, O.M., Park, J.H., Lee, S.M.: Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chen, T.P., Liu, X.W., Lu, W.L.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I, Regul. Pap. 54, 1317–1326 (2007) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, K.Z., Small, M., Fu, X.C.: Generation of clusters in complex dynamical networks via pinning control. J. Phys. A, Math. Theor. 41, 505101 (2008) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhang, H.F., Li, K.Z., Fu, X.C., Wang, B.H.: An efficient control strategy of epidemic spreading on scale-free networks. Chin. Phys. Lett. 26, 068901 (2009) CrossRefGoogle Scholar
  11. 11.
    Feng, J.W., Yam, P., Austin, F., Chen, X.: Synchronizing the noise-perturbed Rösler hyperchaotic system via sliding mode control. Z. Naturforsch. A 66, 6–12 (2011) Google Scholar
  12. 12.
    Choi, Y.P., Haa, S.Y., Yunb, S.B.: Complete synchronization of Kuramoto oscillators with finite inertia. Physica D 240, 32–44 (2011) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Li, X., Leung, A.C.S., Han, X., Liu, X., Chu, Y.: Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dyn. 63, 263–275 (2011) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Wang, Z., Shi, X.: Anti-synchronization of Liu system and Lorenz system with known or unknown parameters. Nonlinear Dyn. 57, 425–430 (2009) MATHCrossRefGoogle Scholar
  15. 15.
    Suresh, R., Senthilkumar, D.V., Lakshmanan, M., Kurths, J.: Global phase synchronization in an array of time-delay systems. Phys. Rev. E 82, 016215 (2010) CrossRefGoogle Scholar
  16. 16.
    Ghosha, D., Chowdhury, A.R.: Lag and anticipatory synchronization based parameter estimation scheme in modulated time-delayed systems. Nonlinear Anal., Real World Appl. 11, 3059–3065 (2010) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, X., Wang, M.: Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems. Nonlinear Dyn. 62, 567–571 (2010) CrossRefGoogle Scholar
  18. 18.
    Hu, M., Xu, Z.: Adaptive feedback controller for projective synchronization. Nonlinear Anal., Real World Appl. 9, 1253–1260 (2008) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Nie, H., Xie, L., Gao, J., Zhan, M.: Projective synchronization of two coupled excitable spiral waves. Chaos 21, 023107 (2011) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yu, Y., Li, H.: Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. Nonlinear Anal., Real World Appl. 12, 388–393 (2011) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Fowler, A.C., Gibbon, J.D., McGuinness, M.J.: The complex Lorenz equations. Physica D 4, 139–163 (1982) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Vladimirov, A.G., Toronov, V.Y., Derbov, V.L.: The complex Lorenz model: geometric structure, homoclinic bifurcation and one-dimensional map. Int. J. Bifurc. Chaos Appl. Sci. Eng. 8, 723–729 (1998) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mahmoud, G.M., Aly, S.A., Farghaly, A.A.: On chaos synchronization of a complex two coupled dynamos system. Chaos Solitons Fractals 33, 178–187 (2007) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Nian, F., Wang, X., Niu, Y., Lin, D.: Module-phase synchronization in complex dynamic system. Appl. Math. Comput. 217, 2481–2489 (2010) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62, 875–882 (2010) MATHCrossRefGoogle Scholar
  26. 26.
    Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: Active control and global synchronization for complex Chen and Lü systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 4295–4308 (2007) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Hu, M., Yang, Y., Xu, Z., Guo, L.: Hybrid projective synchronization in a chaotic complex nonlinear system. Math. Comput. Simul. 79, 449–457 (2008) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Mahmoud, G.M., Bountis, T., AbdEl-Latif, G.M., Mahmoud, E.E.: Chaos synchronization of two different chaotic complex Chen and Lü systems. Nonlinear Dyn. 55, 43–53 (2009) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Mahmoud, G.M., Aly, S.A., AL-Kashif, M.A.: Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dyn. 51, 171–181 (2008) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Liu, S., Liu, P.: Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Anal., Real World Appl. (2011). doi: 10.1016/j.nonrwa.2011.05.006 Google Scholar
  31. 31.
    Sun, Y.J.: Generalized projective synchronization for a class of chaotic systems with parameter mismatching, unknown external excitation, and uncertain input nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 16, 3863–3870 (2011) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Ghosh, D.: Generalized projective synchronization in time-delayed systems: nonlinear observer approach. Chaos 19, 013102 (2009) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Cai, N., Jing, Y., Zhang, S.: Modified projective synchronization of chaotic systems with disturbances via active sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 15, 1613–1620 (2010) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Wen, G.: Designing Hopf limit circle to dynamical systems via modified projective synchronization. Nonlinear Dyn. 63, 387–393 (2011) CrossRefGoogle Scholar
  35. 35.
    Wu, Z., Fu, X.: Adaptive function projective synchronization of discrete chaotic systems with unknown parameters. Chin. Phys. Lett. 27, 050502 (2010) CrossRefGoogle Scholar
  36. 36.
    Du, H., Zeng, Q., Wang, C., Ling, M.: Function projective synchronization in coupled chaotic systems. Nonlinear Anal., Real World Appl. 11, 705–712 (2010) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceJiangxi Normal UniversityNanchangChina
  2. 2.Institute for Pure and Applied MathematicsUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of Applied MathematicsIllinois Institute of TechnologyChicagoUSA
  4. 4.Department of MathematicsShanghai UniversityShanghaiChina

Personalised recommendations