Nonlinear Dynamics

, Volume 69, Issue 3, pp 721–729 | Cite as

Hopf bifurcation for a class of fractional differential equations with delay

  • Azizollah Babakhani
  • Dumitru Baleanu
  • Reza Khanbabaie
Original Paper

Abstract

The main purpose of this manuscript is to prove the existence of solutions for delay fractional order differential equations (FDE) at the neighborhood of its equilibrium point. After we convert the delay FDE into linear delay FDE by using its equilibrium point, we define the 1:2 resonant double Hopf point set with its characteristic equation. We find the members of this set in different cases. The bifurcation curves for a class of delay FDE are obtained within a differential operator of Caputo type with the lower terminal at −∞.

Keywords

Fractional calculus Hopf bifurcation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oldham, K.B., Spanier, I.: The Fractional Calculus. Academic Press, New York (1974) MATHGoogle Scholar
  2. 2.
    Miller, K.B., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) MATHGoogle Scholar
  3. 3.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) MATHGoogle Scholar
  4. 4.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) MATHCrossRefGoogle Scholar
  5. 5.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) MATHCrossRefGoogle Scholar
  6. 6.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993) MATHGoogle Scholar
  7. 7.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publisher, Inc., Reading (2006) Google Scholar
  8. 8.
    Mainardi, F., Pagnini, G., Gorenflo, R.: Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6(4), 441–459 (2003) MathSciNetMATHGoogle Scholar
  9. 9.
    Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamiltonian formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263–282 (2008) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives - an expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Fractional Bloch equation with delay. Comput. Math. Appl. 61(5), 1355–1365 (2007) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jarad, F., Abdeljawad (Maraaba), T., Baleanu, D.: Fractional variational principles with delay within Caputo derivatives. Rep. Math. Phys. 65(1), 17–28 (2010) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chen, Y.Q., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dyn. 29, 191–200 (2002) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983) MATHGoogle Scholar
  17. 17.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007) Google Scholar
  18. 18.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, Berlin (2004) MATHGoogle Scholar
  19. 19.
    De Melo, W., Van Strien, S.: One Dimensional Dynamics. Springer, Berlin (1993) MATHGoogle Scholar
  20. 20.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007) Google Scholar
  21. 21.
    Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2006) Google Scholar
  22. 22.
    Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Azizollah Babakhani
    • 1
  • Dumitru Baleanu
    • 2
    • 3
  • Reza Khanbabaie
    • 1
  1. 1.Faculty of Basic ScienceBabol University of TechnologyBabolIran
  2. 2.Department of Mathematics and Computer ScienceCankaya UniversityAnkaraTurkey
  3. 3.Institute of Space SciencesMagurele-BucharestRomania

Personalised recommendations