Advertisement

Nonlinear Dynamics

, Volume 68, Issue 3, pp 381–399 | Cite as

A simplified model system for Toxoplasma gondii spread within a heterogeneous environment

  • M. Langlais
  • M. LéluEmail author
  • C. Avenet
  • E. Gilot-Fromont
Original Paper

Abstract

This study is dedicated to building and analyzing the spatial spread of Toxoplasma gondii through a heterogeneous predator–prey system. The spatial domain is made of N patches hosting various population species, some of them being prey, others being predators. Predators offer strong heterogeneities with respect to local sustainable resources yielding variable growth rates, from exponential decay to logistic regulation. T. gondii life cycle goes through several stages, starting in the environment where oocysts are released from cat feces, reaching prey within which asexual reproduction yields cysts and then predators wherein sexual reproduction takes place. The resulting model system is complex to handle. We consider some relevant toy models with three patches, two resident predator species and Lotka–Volterra functional responses to predation. We provide the existence and local stability of a persistent stationary state for the underlying predator–prey model systems. The reproduction number R 0 is computed in the quasistationary case; it simplifies when slow–fast dynamics are considered. Numerical experiments illustrate our analysis.

Keywords

Toxoplasma gondii Predator–prey system Fragmented domain Parasite persistence R0 Slow–fast dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arino, J., van den Driessche, P.: Disease spread in metapopulations. In: Zhao, X.-O., Zou, X. (eds.) Nonlinear Dynamics and Evolution Equations. Fields Instit. Commun, vol. 48, pp. 1–13. AMS, Providence (2006) Google Scholar
  2. 2.
    Artois, M., Duchene, M.-J., Pericard, J.-M., Xemar, V.: Le chat errant ou haret. Encyclopédie des carnivores de France, n18. Société Française pour l’Etude et la Protection des Mammifères (2002). 50 pp Google Scholar
  3. 3.
    Auger, P., Bravo de la Para, R., Poggiale, J.C., Sanchez, E., Nguyen-Huu, T.: Aggregation of variables and applications to population dynamics. In: Magal, P., Ruan, S. (eds.) Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, vol. 1936, pp. 209–263. Springer, Berlin (2008) CrossRefGoogle Scholar
  4. 4.
    Auger, P., Bravo de la Parra, R., Poggiale, J.C., Sánchez, E., Sanz, L.: Aggregation methods in dynamical systems and applications in population and community dynamics. Phys. Life Rev. 5, 79–105 (2008) CrossRefGoogle Scholar
  5. 5.
    Berthier, K., Langlais, M., Auger, P., Pontier, D.: Dynamics of a feline virus with two transmission modes within exponentially growing host populations. Proc. R. Soc. Lond. B, Biol. Sci., 267, 2049–2056 (2000) CrossRefGoogle Scholar
  6. 6.
    Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, Berlin (2001) zbMATHGoogle Scholar
  7. 7.
    Diekmann, O., Heesterbeck, J.A.P.: Mathematical Epidemiology of Infectious Diseases, Mathematical and Computational Biology. Wiley, Chichester (2000) Google Scholar
  8. 8.
    Dubey, J.P.: Toxoplasmosis in Animals and Man, 2nd edn. CRC Press, Boca Raton (2009) Google Scholar
  9. 9.
    Fitzgibbon, W.E., Langlais, M.: Simple models for the transmission of microparasites between host populations living on non coincident spatial domains. In: Magal, P., Ruan, S. (eds.) Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, vol. 1936, pp. 115–164. Springer, Berlin (2008) CrossRefGoogle Scholar
  10. 10.
    Fromont, E., Pontier, D., Langlais, M.: Dynamics of a feline retrovirus (FeLV) in hosts populations with variable structure. Proc. R. Soc. Lond. B, Biol. Sci. 265, 1097–1104 (1998) CrossRefGoogle Scholar
  11. 11.
    Hsu, S.B.: A survey of constructing Lyapunov functions for mathematical models in Biology. Taiwan. J. Math., 9, 151–173 (2005) zbMATHGoogle Scholar
  12. 12.
    Lélu, M.: Etude d’un parasite à cycle complexe, Toxoplasma gondii: variabilité du cycle de transmission et dynamique de la phase environnementale. Ph.D, University of Reims (2010), 207 pp Google Scholar
  13. 13.
    Lélu, M., Langlais, M., Poulle, M.L., Gilot-Fromont, E.: Transmission dynamics of Toxoplasma gondii along an urban-rural gradient. Theor. Popul. Biol. 78, 139–147 (2010) CrossRefGoogle Scholar
  14. 14.
    Murray, J.D.: Mathematical Biology I: An Introduction, 3rd edn. Springer, Berlin (2003) Google Scholar
  15. 15.
    Orrock, J.L., Allan, B.F., Drost, C.A.: Biogeographic and ecological regulation of disease: Prevalence of Sin Nombre virus in island mice is related to island area, precipitation, and predator richness. Am. Nat. 177, 691–697 (2011) CrossRefGoogle Scholar
  16. 16.
    Poggiale, J.C., Auger, P.: Impact of spatial heterogeneity on a predator–prey system dynamics. C. R. Biol. 327, 1058–1063 (2004) CrossRefGoogle Scholar
  17. 17.
    Raoul, F., Deplazes, P., Rieffel, D., Lambert, J.C., Giraudoux, P.: Predator dietary response to prey density variation and consequences for cestode transmission. Oecologia 164, 129–139 (2010) CrossRefGoogle Scholar
  18. 18.
    Sauvage, F., Langlais, M., Yoccoz, N.G., Pontier, D.: Modelling Hantavirus in cyclic bank voles: the role of indirect transmission on virus persistence. J. Anim. Ecol. 72, 1–13 (2003) CrossRefGoogle Scholar
  19. 19.
    van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Varga, R.: Matrix Iterative Analysis. Prentice-Hall, New York (1962) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Langlais
    • 1
  • M. Lélu
    • 2
    Email author
  • C. Avenet
    • 2
  • E. Gilot-Fromont
    • 2
    • 3
  1. 1.Univ. Bordeaux SegalenInstitut de Mathématiques de BordeauxBordeaux CedexFrance
  2. 2.Université de Lyon, Université Lyon 1UMR5558 Laboratoire de Biométrie et Biologie EvolutiveVilleurbanne CedexFrance
  3. 3.Université de Lyon, VetAgro Sup, Campus Vétérinaire de LyonSanté Publique VétérinaireMarcy l’EtoileFrance

Personalised recommendations