Nonlinear Dynamics

, Volume 68, Issue 1–2, pp 259–273 | Cite as

Integrable cases in the dynamics of axial gyrostats and adiabatic invariants

  • Vladimir S. AslanovEmail author
Original Paper


This paper presents the study of axial gyrostats dynamics. The gyrostat is composed of two rigid bodies: an asymmetric platform and an axisymmetric rotor aligned with the platform principal axis. The paper discusses three types of gyrostats: oblate, prolate, and intermediate. Rotation of the rotor relative to the platform provides a source of small internal angular momentum and does not affect the moment of inertia tensor of the gyrostat. The dynamics of gyrostats without external torque is considered. The dynamics is described by using ordinary differential equations with Andoyer–Deprit canonical variables. For undisturbed motion, when the internal moment is equal to zero, the stationary solutions are found, and their stability is studied. General analytical solutions in terms of elliptic functions are also obtained. These results can be interpreted as the development of the classical Euler case for a solid, when to one degree of freedom—the relative rotation of bodies—is added. For disturbed motion of the gyrostats, when there is a system with slowly varying parameters, the adiabatic invariants are obtained in terms of complete elliptic integrals, which are approximately equal to the first integrals of the disturbed system. The adiabatic invariants remain approximately constant along a trajectory for long time intervals during which the parameter changes considerably. The results of the study can be useful for the analysis of dynamics of dual-spin spacecraft and for studying a chaotic behavior of the spacecraft.


Axial gyrostats Andoyer–Deprit variables Adiabatic invariants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rumyantsev, V.V.: On the Lyapunov’s methods in the study of stability of motions of rigid bodies with fluid-filled cavities. Adv. Appl. Mech. 8, 183–232 (1964) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Tong, X., Tabarrok, B., Rimrott, F.: Chaotic motion of an asymmetric gyrostat in the gravitational field. Int. J. Non-Linear Mech. 30, 191–203 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Kinsey, K.J., Mingori, D.L., Rand, R.H.: Non-linear control of dual-spin spacecraft during despin through precession phase lock. J. Guid. Control Dyn. 19, 60–67 (1996) zbMATHCrossRefGoogle Scholar
  4. 4.
    Hall, C.D.: Escape from gyrostat trap states. J. Guid. Control Dyn. 21, 421–426 (1998) CrossRefGoogle Scholar
  5. 5.
    Hall, C.D., Rand, R.H.: Spinup dynamics of axial dual-spin spacecraft. J. Guid. Control Dyn. 17(1), 30–37 (1994) CrossRefGoogle Scholar
  6. 6.
    Anchev, A.: On the stability of the permanent rotations of a heavy gyrostat. J. Appl. Math. Mech. 26(1), 22–28 (1962) CrossRefGoogle Scholar
  7. 7.
    Kane, T.R.: Solution of the Equations of rotational motion for a class of torque-free gyrostats. AIAA J. 8(6), 1141–1143 (1970) CrossRefGoogle Scholar
  8. 8.
    Elipe, A.: Gyrostats in free rotation. Int. Astron. Union Colloq. 165, 1–8 (1991) Google Scholar
  9. 9.
    El-Sabaa, F.M.: Periodic solutions and their stability for the problem of gyrostat. Astrophys. Space Sci. 183, 199–213 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cochran, J.E., Shu, P.-H., Rew, S.D.: Attitude motion of asymmetric dual-spin spacecraft. J. Guid. Control Dyn. 5(1), 37–42 (1982) zbMATHCrossRefGoogle Scholar
  11. 11.
    Cavas, J.A., Vigueras, A.: An integrable case of rotational motion analogue to that of Lagrange and Poisson for a gyrostat in a Newtonian force field. Celest. Mech. Dyn. Astron. 60, 317–330 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    El-Gohary, A.I.: On the stability of an equilibrium position and rotational motion of a gyrostat. Mech. Res. Commun. 24, 457–462 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    El-Gohary, A.: On the control of programmed motion of a rigid containing moving masses. Int. J. Non-Linear Mech. 35(1), 27–35 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    El-Gohary, A.: On the stability of the relative programmed motion of a satellite gyrostat. Mech. Res. Commun. 25(4), 371–379 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    El-Gohary, A.: Optimal stabilization of the rotational motion of rigid body with the help of rotors. Int. J. Non-Linear Mech. 35(3), 393–403 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    El-Gohary, A., Hassan, S.Z.: On the exponential stability of the permanent rotational motion of a gyrostat. Mech. Res. Commun. 26(4), 479–488 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Tsogas, V., Kalvouridis, T.J., Mavraganis, A.G.: Equilibrium states of a gyrostat satellite moving in the gravitational field of an annular configuration of N big bodies. Acta Mech. 175(1–4), 181–195 (2005) zbMATHCrossRefGoogle Scholar
  18. 18.
    Kalvouridis, T.J.: Stationary solutions of a small gyrostat in the Newtonian field of two massive bodies. Nonlinear Dyn. 61(3), 373–381 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Balsas, M.C., Jimenez, E.S., Vera, J.A.: The motion of a gyrostat in a central gravitational field: phase portraits of an integrable case. J. Nonlinear Math. Phys. 15, 53–64 (2008) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Neishtadt, A.I., Pivovarov, M.L.: Separatrix crossing in the dynamics of a dual-spin satellite. J. Appl. Math. Mech. 64, 741–746 (2000) zbMATHCrossRefGoogle Scholar
  21. 21.
    Aslanov, V.S., Doroshin, A.V.: Chaotic dynamics of an unbalanced gyrostat. J. Appl. Math. Mech. 74, 524–535 (2010) CrossRefGoogle Scholar
  22. 22.
    Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986) Google Scholar
  23. 23.
    Andoyer, H.: Cours de Mechanique Celeste, vol. 1. Gauthier-Villars, Paris (1923) Google Scholar
  24. 24.
    Deprit, A.: A free rotation of a rigid body studied in the phase plane. Am. J. Phys. 35, 424–428 (1967) CrossRefGoogle Scholar
  25. 25.
    Korn, G., Korn, T.: Mathematical Handbook. McGraw-Hill Book Company, New York (1968) Google Scholar
  26. 26.
    Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series and Products. Academic Press, San Diego (1980) zbMATHGoogle Scholar
  27. 27.
    Born, M.: Problem of Atomic Dynamics. Massachusetts Institute of Technology, Cambridge (1926) Google Scholar
  28. 28.
    Wolfram MathWorldive Mathematics Resource

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Samara State Aerospace University named after academician S.P. KorolyovSamaraRussia

Personalised recommendations