Nonlinear Dynamics

, Volume 68, Issue 3, pp 329–346 | Cite as

Intermittent neural synchronization in Parkinson’s disease

  • Leonid L. Rubchinsky
  • Choongseok Park
  • Robert M. Worth
Original Paper


Motor symptoms of Parkinson’s disease are related to the excessive synchronized oscillatory activity in the beta frequency band (around 20 Hz) in the basal ganglia and other parts of the brain. This review explores the dynamics and potential mechanisms of these oscillations employing ideas and methods from nonlinear dynamics. We present extensive experimental documentation of the relevance of synchronized oscillations to motor behavior in Parkinson’s disease, and we discuss the intermittent character of this synchronization. The reader is introduced to novel time-series analysis techniques aimed at the detection of the fine temporal structure of intermittent phase locking observed in the brains of Parkinsonian patients. Modeling studies of brain networks are reviewed, which may describe the observed intermittent synchrony, and we discuss what these studies reveal about brain dynamics in Parkinson’s disease. The Parkinsonian brain appears to exist on the boundary between phase-locked and nonsynchronous dynamics. Such a situation may be beneficial in the healthy state, as it may allow for easy formation and dissociation of transient patterns of synchronous activity which are required for normal motor behavior. Dopaminergic degeneration in Parkinson’s disease may shift the brain networks closer to this boundary, which would still permit some motor behavior while accounting for the associated motor deficits. Understanding the mechanisms of the intermittent synchrony in Parkinson’s disease is also important for biomedical engineering since efficient control strategies for suppression of pathological synchrony through deep brain stimulation require knowledge of the dynamics of the processes subjected to control.


Intermittency Phase locking Phase synchronization Basal ganglia Subthalamic nucleus Neuronal modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abarbanel, H.D.I., et al.: Synchronization in neural networks. Phys. Usp. 39, 337–362 (1996) CrossRefGoogle Scholar
  2. 2.
    Rabinovich, M.I., et al.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78(4), 1213–1265 (2006) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge (2007) Google Scholar
  4. 4.
    Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, New York (2010) zbMATHCrossRefGoogle Scholar
  5. 5.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001) zbMATHCrossRefGoogle Scholar
  6. 6.
    Engel, A.K., Fries, P., Singer, W.: Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev., Neurosci. 2(10), 704–716 (2001) CrossRefGoogle Scholar
  7. 7.
    Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304(5679), 1926–1929 (2004) CrossRefGoogle Scholar
  8. 8.
    Uhlhaas, P.J., et al.: Neural synchrony and the development of cortical networks. Trends Cogn. Sci. 14(2), 72–80 (2010) CrossRefGoogle Scholar
  9. 9.
    Fell, J., Axmacher, N.: The role of phase synchronization in memory processes. Nat. Rev., Neurosci. 12(2), 105–118 (2011) CrossRefGoogle Scholar
  10. 10.
    Sanes, J.N., Donoghue, J.P.: Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc. Natl. Acad. Sci. USA 90(10), 4470–4474 (1993) CrossRefGoogle Scholar
  11. 11.
    Murthy, V.N., Fetz, E.E.: Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. J. Neurophysiol. 76(6), 3949–3967 (1996) Google Scholar
  12. 12.
    Baker, S.N., et al.: The role of synchrony and oscillations in the motor output. Exp. Brain Res. 128(1–2), 109–117 (1999) CrossRefGoogle Scholar
  13. 13.
    Schnitzler, A., Gross, J.: Normal and pathological oscillatory communication in the brain. Nat. Rev., Neurosci. 6(4), 285–296 (2005) CrossRefGoogle Scholar
  14. 14.
    Uhlhaas, P.J., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1), 155–168 (2006) CrossRefGoogle Scholar
  15. 15.
    Uhlhaas, P.J., Singer, W.: Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev., Neurosci. 11(2), 100–113 (2010) CrossRefGoogle Scholar
  16. 16.
    Le Van Quyen, M., Bragin, A.: Analysis of dynamic brain oscillations: methodological advances. Trends Neurosci. 30(7), 365–373 (2007) CrossRefGoogle Scholar
  17. 17.
    Rivlin-Etzion, M., et al.: Basal ganglia oscillations and pathophysiology of movement disorders. Curr. Opin. Neurobiol. 16(6), 629–637 (2006) CrossRefGoogle Scholar
  18. 18.
    Hutchison, W.D., et al.: Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J. Neurosci. 24(42), 9240–9243 (2004) CrossRefGoogle Scholar
  19. 19.
    Boraud, T., et al.: Oscillations in the basal ganglia: The good, the bad, and the unexpected. In: Bolam, J.P., Ingham, C.A., Magill, P.J. (eds.) The Basal Ganglia VIII. Springer, New York (2005) Google Scholar
  20. 20.
    Gatev, P., Darbin, O., Wichmann, T.: Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov. Disord. 21(10), 1566–1577 (2006) CrossRefGoogle Scholar
  21. 21.
    Hammond, C., Bergman, H., Brown, P.: Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30(7), 357–364 (2007) CrossRefGoogle Scholar
  22. 22.
    Bergman, H., et al.: Physiological aspects of information processing in the basal ganglia of normal and Parkinsonian primates. Trends Neurosci. 21(1), 32–38 (1998) CrossRefGoogle Scholar
  23. 23.
    Goldberg, J.A., et al.: Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease. J. Neurosci. 22(11), 4639–4653 (2002) Google Scholar
  24. 24.
    Soares, J., et al.: Role of external pallidal segment in primate Parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism and lesions of the external pallidal segment. J. Neurosci. 24(29), 6417–6426 (2004) CrossRefGoogle Scholar
  25. 25.
    Costa, R.M., et al.: Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron 52(2), 359–369 (2006) CrossRefGoogle Scholar
  26. 26.
    Sharott, A., et al.: Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat. J. Physiol. 562(Pt 3), 951–963 (2005) Google Scholar
  27. 27.
    Magill, P.J., et al.: Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat. J. Neurophysiol. 92(4), 2122–2136 (2004) CrossRefGoogle Scholar
  28. 28.
    Magill, P.J., et al.: Changes in functional connectivity within the rat striatopallidal axis during global brain activation in vivo. J. Neurosci. 26(23), 6318–6329 (2006) CrossRefGoogle Scholar
  29. 29.
    Goldberg, J.A., et al.: Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials. J. Neurosci. 24(26), 6003–6010 (2004) CrossRefGoogle Scholar
  30. 30.
    Fogelson, N., et al.: Different functional loops between cerebral cortex and the subthalamic area in Parkinson’s disease. Cereb. Cortex 16(1), 64–75 (2006) CrossRefGoogle Scholar
  31. 31.
    Lalo, E., et al.: Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. J. Neurosci. 28(12), 3008–3016 (2008) CrossRefGoogle Scholar
  32. 32.
    Plenz, D., Kital, S.T.: A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400(6745), 677–682 (1999) CrossRefGoogle Scholar
  33. 33.
    Bevan, M.D., et al.: Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 25(10), 525–531 (2002) CrossRefGoogle Scholar
  34. 34.
    Surmeier, D.J., Mercer, J.N., Chan, C.S.: Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Curr. Opin. Neurobiol. 15(3), 312–318 (2005) CrossRefGoogle Scholar
  35. 35.
    Bevan, M.D., Atherton, J.F., Baufreton, J.: Cellular principles underlying normal and pathological activity in the subthalamic nucleus. Curr. Opin. Neurobiol. 16(6), 621–628 (2006) CrossRefGoogle Scholar
  36. 36.
    Cassidy, M., et al.: Movement-related changes in synchronization in the human basal ganglia. Brain 125(Pt 6), 1235–1246 (2002) CrossRefGoogle Scholar
  37. 37.
    Levy, R., et al.: Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 125(Pt 6), 1196–1209 (2002) CrossRefGoogle Scholar
  38. 38.
    Kuhn, A.A., et al.: Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 127(Pt 4), 735–746 (2004) CrossRefGoogle Scholar
  39. 39.
    Amirnovin, R., et al.: Visually guided movements suppress subthalamic oscillations in Parkinson’s disease patients. J. Neurosci. 24(50), 11302–11306 (2004) CrossRefGoogle Scholar
  40. 40.
    Brown, P., et al.: Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 21(3), 1033–1108 (2001) Google Scholar
  41. 41.
    Priori, A., et al.: Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp. Neurol. 189(2), 369–379 (2004) CrossRefGoogle Scholar
  42. 42.
    Williams, D., et al.: Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125(Pt 7), 1558–1569 (2002) CrossRefGoogle Scholar
  43. 43.
    Levy, R., et al.: Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease. J. Neurophysiol. 86(1), 249–260 (2001) Google Scholar
  44. 44.
    Sharott, A., et al.: Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur. J. Neurosci. 21(5), 1413–1422 (2005) CrossRefGoogle Scholar
  45. 45.
    Silberstein, P., et al.: Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128(Pt 6), 1277–1291 (2005) CrossRefGoogle Scholar
  46. 46.
    Kuhn, A.A., et al.: Frequency-specific effects of stimulation of the subthalamic area in treated Parkinson’s disease patients. NeuroReport 20(11), 975–978 (2009) CrossRefGoogle Scholar
  47. 47.
    Weinberger, M., et al.: Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J. Neurophysiol. 96(6), 3248–3256 (2006) CrossRefGoogle Scholar
  48. 48.
    Marceglia, S., et al.: Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson’s disease. J. Physiol. 571(Pt 3), 579–591 (2006) CrossRefGoogle Scholar
  49. 49.
    Dejean, C., et al.: Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. J. Neurophysiol. 100(1), 385–396 (2008) CrossRefGoogle Scholar
  50. 50.
    Wingeier, B., et al.: Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp. Neurol. 197(1), 244–251 (2006) CrossRefGoogle Scholar
  51. 51.
    Kuhn, A.A., et al.: High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J. Neurosci. 28(24), 6165–6173 (2008) CrossRefGoogle Scholar
  52. 52.
    Eusebio, A., et al.: Deep brain stimulation can suppress pathological synchronisation in Parkinsonian patients. J. Neurol., Neurosurg. Psychiatry 82(5), 569–573 (2011) CrossRefGoogle Scholar
  53. 53.
    Brown, P., Williams, D.: Basal ganglia local field potential activity: character and functional significance in the human. Clin. Neurophysiol. 116(11), 2510–2519 (2005) CrossRefGoogle Scholar
  54. 54.
    Brown, P.: Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr. Opin. Neurobiol. 17(6), 656–664 (2007) CrossRefGoogle Scholar
  55. 55.
    Engel, A.K., Fries, P.: Beta-band oscillations—signalling the status quo? Curr. Opin. Neurobiol. 20(2), 156–165 (2010) CrossRefGoogle Scholar
  56. 56.
    Leblois, A., et al.: Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism. Eur. J. Neurosci. 26(6), 1701–1713 (2007) CrossRefGoogle Scholar
  57. 57.
    Mallet, N., et al.: Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J. Neurosci. 28(18), 4795–4806 (2008) CrossRefGoogle Scholar
  58. 58.
    Chen, C.C., et al.: Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Exp. Neurol. 205(1), 2142–2151 (2007) CrossRefGoogle Scholar
  59. 59.
    Pogosyan, A., et al.: Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr. Biol. 19(19), 1637–1641 (2009) CrossRefGoogle Scholar
  60. 60.
    Montgomery, E.B.: Basal ganglia physiology and pathophysiology: a reappraisal. Parkinsonism Relat. Disord. 13(8), 455–465 (2007) CrossRefGoogle Scholar
  61. 61.
    Gale, J.T., et al.: From symphony to cacophony: pathophysiology of the human basal ganglia in Parkinson disease. Neurosci. Biobehav. Rev. 32(3), 378–387 (2008) MathSciNetCrossRefGoogle Scholar
  62. 62.
    Gradinaru, V., et al.: Optical deconstruction of Parkinsonian neural circuitry. Science 324(5925), 354–359 (2009) CrossRefGoogle Scholar
  63. 63.
    Hutchison, W.D., Dostrovsky, J.O., Lozano, A.M.: Movement disorders surgery: microelectrode recording from deep brain nuclei. In: Hallett, I.M. (ed.) Movement Disorder, Handbook of Clinical Neuorphysiology. Elsevier, Amsterdam (2003) Google Scholar
  64. 64.
    Israel, Z., Burchiel, K.: Microelectrode Recording in Movement Disorder Surgery. Thieme, Stuttgart (2004) Google Scholar
  65. 65.
    Park, C., Worth, R.M., Rubchinsky, L.L.: Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. J. Neurophysiol. 103(5), 2707–2716 (2010) CrossRefGoogle Scholar
  66. 66.
    Hurtado, J.M., Rubchinsky, L.L., Sigvardt, K.A.: Statistical method for detection of phase-locking episodes in neural oscillations. J. Neurophysiol. 91(4), 1883–1898 (2004) CrossRefGoogle Scholar
  67. 67.
    Hurtado, J.M., et al.: Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson’s disease. J. Neurophysiol. 93(3), 1569–1584 (2005) CrossRefGoogle Scholar
  68. 68.
    Le Van Quyen, M., et al.: Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods 111(2), 83–98 (2001) CrossRefGoogle Scholar
  69. 69.
    Ahn, S., Park, C., Rubchinsky, L.L.: Detecting the temporal structure of intermittent phase locking. Phys. Rev. E 84(1), 016201 (2011) CrossRefGoogle Scholar
  70. 70.
    Terman, D., et al.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22(7), 2963–2976 (2002) Google Scholar
  71. 71.
    Mallet, N., et al.: Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J. Neurosci. 28(52), 14245–14258 (2008) CrossRefGoogle Scholar
  72. 72.
    Wilson, C.J.: Basal Ganglia. In: Shepherd, G.M. (ed.) The Synaptic Organization of the Brain. Oxford University Press, New York (2004) Google Scholar
  73. 73.
    Smith, Y., et al.: Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2), 353–387 (1998) CrossRefGoogle Scholar
  74. 74.
    Bolam, J.P., et al.: Synaptic organisation of the basal ganglia. J. Anat. 196(Pt 4), 527–542 (2000) CrossRefGoogle Scholar
  75. 75.
    Buzsaki, G., Traub, R.D., Pedley, T.A.: The cellular basis of EEG activity. In: Ebersole, J.S., Pedley, T.A. (eds.) Current Practice of Clinical Electroencephalography, pp. 1–11. Lippincott Williams & Wilkins, Philadelphia (2003) Google Scholar
  76. 76.
    Mitzdorf, U.: Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65(1), 37–100 (1985) Google Scholar
  77. 77.
    Wilson, C.L., Puntis, M., Lacey, M.G.: Overwhelmingly asynchronous firing of rat subthalamic nucleus neurones in brain slices provides little evidence for intrinsic interconnectivity. Neuroscience 123(1), 187–200 (2004) CrossRefGoogle Scholar
  78. 78.
    Stanford, I.M., Cooper, A.J.: Presynaptic mu and delta opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro. J. Neurosci. 19(12), 4796–4803 (1999) Google Scholar
  79. 79.
    Ogura, M., Kita, H.: Dynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat. J. Neurophysiol. 83(6), 3366–33676 (2000) Google Scholar
  80. 80.
    Cooper, A.J., Stanford, I.M.: Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro. Neuropharmacology 41(1), 62–71 (2001) CrossRefGoogle Scholar
  81. 81.
    Shen, K.Z., Johnson, S.W.: Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. J. Physiol. 525(Pt 2), 331–341 (2000) CrossRefGoogle Scholar
  82. 82.
    Floran, B., et al.: Dopamine D4 receptors inhibit depolarization-induced [3H]GABA release in the rat subthalamic nucleus. Eur. J. Pharmacol. 498(1–3), 97–102 (2004) CrossRefGoogle Scholar
  83. 83.
    Shen, K.Z., et al.: Dopamine receptor supersensitivity in rat subthalamus after 6-hydroxydopamine lesions. Eur. J. Neurosci. 18(11), 2967–2974 (2003) CrossRefGoogle Scholar
  84. 84.
    Cragg, S.J., et al.: Synaptic release of dopamine in the subthalamic nucleus. Eur. J. Neurosci. 20(7), 1788–1802 (2004) CrossRefGoogle Scholar
  85. 85.
    Shen, K.Z., Johnson, S.W.: Dopamine depletion alters responses to glutamate and GABA in the rat subthalamic nucleus. NeuroReport 16(2), 171–174 (2005) CrossRefGoogle Scholar
  86. 86.
    Baufreton, J., Bevan, M.D.: D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus. J. Physiol. 586(8), 2121–2142 (2008) CrossRefGoogle Scholar
  87. 87.
    Park, C., Worth, R., Rubchinsky, L.L.: Neural dynamics in Parkinsonian brain: the boundary between synchronized and nonsynchronized dynamics. Phys. Rev. E 83(4), 042901 (2011) CrossRefGoogle Scholar
  88. 88.
    Hernandez, A., et al.: Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. J. Neurophysiol. 96(6), 2877–2888 (2006) CrossRefGoogle Scholar
  89. 89.
    Baufreton, J., et al.: Dopamine receptors set the pattern of activity generated in subthalamic neurons. FASEB J. 19(13), 1771–1777 (2005) CrossRefGoogle Scholar
  90. 90.
    Ramanathan, S., et al.: D2-like dopamine receptors modulate SKCa channel function in subthalamic nucleus neurons through inhibition of Cav2.2 channels. J. Neurophysiol. 99(2), 4424–4459 (2008) CrossRefGoogle Scholar
  91. 91.
    Park, C., Rubchinsky, L.L.: Intermittent synchronization in a network of bursting neurons. Chaos 21, 033125 (2011) CrossRefGoogle Scholar
  92. 92.
    Rabinovich, M., Huerta, R., Laurent, G.: Neuroscience. Transient dynamics for neural processing. Science 321(5885), 48–50 (2008) CrossRefGoogle Scholar
  93. 93.
    Tsuda, I.: Hypotheses on the functional roles of chaotic transitory dynamics. Chaos 19(1), 015113 (2009) MathSciNetCrossRefGoogle Scholar
  94. 94.
    Hurtado, J.M., Rubchinsky, L.L., Sigvardt, K.A.: The dynamics of tremor networks in Parkinson’s disease. In: Bezard, E. (ed.) Recent Breakthroughs in Basal Ganglia Research, pp. 249–266. Nova Publishers, New York (2006) Google Scholar
  95. 95.
    Rosenblum, M., Pikovsky, A.: Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 70(4 Pt 1), 041904 (2004) MathSciNetCrossRefGoogle Scholar
  96. 96.
    Popovych, O.V., Hauptmann, C., Tass, P.A.: Control of neuronal synchrony by nonlinear delayed feedback. Biol. Cybern. 95(1), 69–85 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Tukhlina, N., et al.: Feedback suppression of neural synchrony by vanishing stimulation. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 75(1 Pt 1), 011918 (2007) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Leonid L. Rubchinsky
    • 1
    • 2
    • 4
  • Choongseok Park
    • 1
  • Robert M. Worth
    • 1
    • 3
  1. 1.Department of Mathematical Sciences and Center for Mathematical BiosciencesIndiana University Purdue University IndianapolisIndianapolisUSA
  2. 2.Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of NeurosurgeryIndiana University School of MedicineIndianapolisUSA
  4. 4.Department of Mathematical SciencesIndiana University Purdue University IndianapolisIndianapolisUSA

Personalised recommendations