Nonlinear Dynamics

, Volume 68, Issue 1–2, pp 107–115 | Cite as

Fractional order inductive phenomena based on the skin effect

  • J. A. Tenreiro MachadoEmail author
  • Alexandra M. S. F. Galhano
Original Paper


The Maxwell equations play a fundamental role in the electromagnetic theory and lead to models useful in physics and engineering. This formalism involves integer-order differential calculus, but the electromagnetic diffusion points towards the adoption of a fractional calculus approach. This study addresses the skin effect and develops a new method for implementing fractional-order inductive elements. Two genetic algorithms are adopted, one for the system numerical evaluation and another for the parameter identification, both with good results.


Skin effect Electromagnetism Inductance Fractional calculus Genetic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) zbMATHCrossRefGoogle Scholar
  2. 2.
    Benchellal, A., Poinot, T., Bachir, S., Trigeassou, J.C.: Identification of a non-integer model of induction machines. In: Proc. 1st IFAC Workshop on Fractional Differentiation and Its Applications, Bordeaux, France, pp. 400–407 (2004) Google Scholar
  3. 3.
    Bessonov, L.: Applied Electricity for Engineers. MIR Publishers, Moscow (1968) Google Scholar
  4. 4.
    Bidan, P.: Commande diffusive d’une machine electrique: une introduction. In: ESAIM Proceedings, France, vol. 5, pp. 55–68 (1998) Google Scholar
  5. 5.
    Bohannan, G.W.: Analog realization of a fractional control element—revisited. In: Proc. of the 41st IEEE Int. Conf. on Decision and Control, Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics, Las Vegas, NV (2002) Google Scholar
  6. 6.
    Carlson, G.E., Halijak, C.A.: Approximation of fractional capacitors (1/s)(1/n) by a regular newton process. IEEE Trans. Circuit Theory CT-10(2), 210–213 (1964) Google Scholar
  7. 7.
    Goldenberg, D.E.: Genetic Algorithms in Search Optimization, and Machine Learning. Addison-Wesley, Reading (1989) Google Scholar
  8. 8.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975) Google Scholar
  9. 9.
    Tenreiro Machado, J.A., Galhano, A., Boaventura, G.J., Jesus, I.S.: Fractional calculus analysis of the electrical skin phenomena. In: Sabatier, J., Agrawal, O.P., Tenreiro Machado, J. (eds.) Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, pp. 323–332. Springer, Dordrecht (2007) Google Scholar
  10. 10.
    Tenreiro Machado, J.A., Alexandra, A.M.O., Galhano, M., Tar, J.K.: Optimal approximation of fractional derivatives through discrete-time fractions using genetic algorithms. Commun. Nonlinear Sci. Numer. Simul. 15(3), 482–490 (2010) CrossRefGoogle Scholar
  11. 11.
    Jesus, I.S., Machado Tenreiro, J.A.: Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56(1–2), 45–55 (2009) zbMATHCrossRefGoogle Scholar
  12. 12.
    Küpfmüller, K.: Einführung in die Theoretische Elektrotechnik. Springer, Berlin (1939) Google Scholar
  13. 13.
    Machado, J.A.T., Jesus, I.S.: A suggestion from the past? Fract. Calc. Appl. Anal. 7(4), 403–407 (2004) zbMATHGoogle Scholar
  14. 14.
    Malpica, W.A., Tenreiro Machado, J., Silva, J.F., de Barros, M.T.C.: Fractional order calculus on the estimation of short-circuit impedance of power transformers. In: Proc. 1st IFAC Workshop on Fractional Differentiation and Its Applications, Bordeaux, France, pp. 408–415 (2004) Google Scholar
  15. 15.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) zbMATHGoogle Scholar
  16. 16.
    Milton, A., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965) Google Scholar
  17. 17.
    Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974) Google Scholar
  18. 18.
    Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1998) Google Scholar
  19. 19.
    Richard, P., Feynman, R.B.L., Sands, M.: The Feynman Lectures on Physics: Mainly Electromagnetism and Matter. Addison-Wesley, Reading (1964) Google Scholar
  20. 20.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993) zbMATHGoogle Scholar
  21. 21.
    Sylvain, C., Faucher, J.: Fractional order: Frequential parametric identification of the skin effect in the rotor bar of squirrel cage induction machine. In: Proc. of the ASME 2003 Design Engineering Technical Conf. and Computers and Information in Engineering Conf., Chicago, IL, DETC 2003/VIB-48393 (2003) Google Scholar
  22. 22.
    Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. A. Tenreiro Machado
    • 1
    Email author
  • Alexandra M. S. F. Galhano
    • 1
  1. 1.Dept. Electrical EngineeringInstitute of Engineering of the Polytechnic of PortoPortoPortugal

Personalised recommendations