Advertisement

Nonlinear Dynamics

, Volume 68, Issue 1–2, pp 63–76 | Cite as

Output feedback controller for hysteretic time-delayed MIMO nonlinear systems

An H-based indirect adaptive interval type-2 fuzzy approach
  • Seyyed Hossein Mousavi
  • Bijan Ranjbar-SahraeiEmail author
  • Navid Noroozi
Original Paper

Abstract

In this paper, an H output feedback controller is developed for a class of time-delayed MIMO nonlinear systems, containing backlash as an input nonlinearity. Particularly, a state observer is proposed to estimate unmeasurable states. The control law can be divided into two elements: An adaptive interval type-2 fuzzy part which approximates the uncertain model. The second part is an H -based controller, which attenuates the effects of external disturbances and approximation errors to a prescribed level. Furthermore, the Lyapunov theorem is used to prove stability of proposed controller and its robustness to external disturbance, hysteresis input nonlinearity, and time varying time-delay. As an example, the designed controller is applied to address the tracking problem of 2-DOF robotic manipulator. Simulation results not only verify the robust properties but also in comparison with an existing method reveal the ability of the proposed controller to exclude the effects of unknown time varying time-delays and hysteresis input nonlinearity.

Keywords

Interval type-2 fuzzy approximator MIMO control H control Hysteretic systems Robotic manipulator control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmadieh Khanesar, M., Teshnehlab, M.: Design of direct interval type-2 fuzzy model reference. ICIC Express Lett. 3(4(A)), 975–982 (2009) Google Scholar
  2. 2.
    Aloui, S., Pages, O., Hajjaji, A.E., et al.: Improved observer-based adaptive fuzzy tracking control for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 20–24 (2009) Google Scholar
  3. 3.
    Brokate, M.: Some mathematical properties of the Preisach model for hysteresis. IEEE Trans. Magn. 25(4), 2922–2924 (1989) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Springer, New York (1996) zbMATHCrossRefGoogle Scholar
  5. 5.
    Castillo, O., Melin, P.: Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–784 (2008) Google Scholar
  6. 6.
    Chen, X., Su, C.Y., Fukuda, T.: Adaptive control for the systems preceded by hysteresis. IEEE Trans. Automat. Control 53(4) (2008) Google Scholar
  7. 7.
    Chiang, C.C., Wu, C.H.: Observer-based adaptive fuzzy sliding mode control of uncertain multiple-input multiple-output nonlinear systems. IEEE Trans. Fuzzy Syst. 23–26 (2007) Google Scholar
  8. 8.
    Essounbouli, N., Hamzaoui, A., Zaytoon, J.: An improved robust adaptive fuzzy controller for MIMO systems. Control Intell. Syst. 34(1), 12–21 (2006) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hsiao, M.Y., Li, T.H.S., Lee, J.Z., et al.: Design of interval type-2 fuzzy sliding-mode controller. Inf. Sci. 178, 1696–1716 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Huang, S., Tan, K.K., Lee, T.H.: Adaptive sliding-mode control of piezoelectric actuators. IEEE Trans. Ind. Electron. 56(9), 3514–3522 (2009) CrossRefGoogle Scholar
  11. 11.
    Ikhouanea, F., Manosab, V., Rodellara, J.: Adaptive control of a hysteretic structural system. Automatica 41, 225–231 (2005) CrossRefGoogle Scholar
  12. 12.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Englewood Cliffs, New York (2005) Google Scholar
  13. 13.
    Krstic, M., Kanellakopoulos, L., Kokotovich, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995) Google Scholar
  14. 14.
    Li, C., Yi, J., Zhao, D.: Design of interval type-2 fuzzy logic system using sampled data and prior knowledge. ICIC Express Lett. 3(3(B)), 695–700 (2009) Google Scholar
  15. 15.
    Lin, T.C., Liu, H.L., Kuo, M.J.: Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems. Eng. Appl. Artif. Intell. 22(3), 420–430 (2009) CrossRefGoogle Scholar
  16. 16.
    Lin, T.C., Roopaei, M.: Based on interval type-2 adaptive fuzzy Hinf tracking controller for SISO time-delay nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4065–4075 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Mendel, J.: Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 12(1), 84–98 (2004) CrossRefGoogle Scholar
  18. 18.
    Mendel, J.M.: Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 12(1), 84–98 (2004) CrossRefGoogle Scholar
  19. 19.
    Mendel, J.M.: Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2(1), 20–29 (2007) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(5), 808–821 (2006) CrossRefGoogle Scholar
  21. 21.
    Noroozi, N., Roopaei, M., Balas, V., Lin, T.C.: Observer-based adaptive variable structure control and synchronization of unknown chaotic systems (2009). doi: 10.1109/SACI.2009.5136215
  22. 22.
    Noroozi, N., Roopaei, M., Karimaghaee, P., Safavi, A.A.: Simple adaptive variable structure control for unknown chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 15(3), 707–727 (2010). doi: 10.1016/j.cnsns.2009.04.036 MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Noroozi, N., Roopaei, M., Zolghadri Jahromi, M.: Adaptive fuzzy sliding mode control scheme for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3978–3992 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Shaocheng, T., Bin, C., Yongfu, W.: Fuzzy adaptive output feedback control for MIMO nonlinear systems. Fuzzy Sets and Systems 156(2) (2005) Google Scholar
  25. 25.
    Shih, T.S., Su, J.S., Yao, J.S.: Fuzzy linear programming based on interval-valued fuzzy sets. Int. J. Innov. Comput. Inf. Control 5(8), 2081–2090 (2009) Google Scholar
  26. 26.
    Su, C.Y., Stepanenko, Y., Svoboda, J., Leung, T.P.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Tong, S., Chen, B., Wang, Y.: Fuzzy adaptive output feedback control for MIMO nonlinear systems. Fuzzy Sets Syst. 156(2), 285–299 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    van Bree, P.J., van Lierop, C.M.M., v. d. Bosch, P.P.J.: Control-oriented hysteresis models for magnetic electron lenses. IEEE Trans. Magn. 45(11), 5235–5238 (2009) CrossRefGoogle Scholar
  29. 29.
    Wang, J.S., Lee, C.S.G.: Sel-adaptive neuro-fuzzy inference systems for classification application. IEEE Trans. Fuzzy Syst. 10(6), 790–802 (2002) CrossRefGoogle Scholar
  30. 30.
    Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis (1994) Google Scholar
  31. 31.
    Wang, W.Y., Chan, M.L., Hsu, C.C., Lee, T.T.: H ; tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 32(4), 483–492 (2002). doi: 10.1109/TSMCB.2002.1018767 CrossRefGoogle Scholar
  32. 32.
    Yang, Y., Zhou, C.: Adaptive fuzzy H stabilization for strict-feedback canonical nonlinear systems via backstepping and small-gain approach. IEEE Trans. Fuzzy Syst. 13(1), 104–114 (2005) CrossRefGoogle Scholar
  33. 33.
    Yu, W.S.: Hinf tracking-based adaptive fuzzy-neural control for MIMO uncertain robotic systems with time delays. Fuzzy Sets Syst. 146(3), 375–401 (2004). doi: 10.1016/j.fss.2003.07.001 zbMATHCrossRefGoogle Scholar
  34. 34.
    Zhou, J., Wen, C., Zhang, Y.: Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 49(10), 1751–1757 (2004) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Seyyed Hossein Mousavi
    • 1
  • Bijan Ranjbar-Sahraei
    • 2
    Email author
  • Navid Noroozi
    • 3
  1. 1.School of Electrical and Computer EngineeringShiraz UniversityShirazIran
  2. 2.Department of Electrical Engineering, Science and Research BranchIslamic Azad UniversityFarsIran
  3. 3.Young Researchers Club, Najaf Abad BranchIslamic Azad UniversityIsfahanIran

Personalised recommendations