Nonlinear Dynamics

, Volume 67, Issue 4, pp 2759–2777 | Cite as

Optimal design of multi-parametric nonlinear systems using a parametric continuation based Genetic Algorithm approach

  • Bipin Balaram
  • M. D. Narayanan
  • P. K. Rajendrakumar
Original Paper


In this paper, a procedure for the optimal design of multi-parametric nonlinear systems is presented which makes use of a parametric continuation strategy based on simple shooting method. Shooting method is used to determine the periodic solutions of the nonlinear system and multi-parametric continuation is then employed to trace the change in the system dynamics as the design parameters are varied. The information on the variation of system dynamics with the value of the parameter vector is then used to find out the exact parameter values for which the system attains the required response. This involves a multi-parametric optimisation procedure which is accomplished by the coupling of parameter continuation with different search algorithms. Genetic Algorithm as well as Gradient Search methods are coupled with parametric continuation to develop an optimisation scheme. Furthermore, in the coupling of continuation and Genetic Algorithm, a “norm-minimising” strategy is developed and made use of minimising the use of continuation. The optimisation procedure developed is applied to the Duffing oscillator for the minimisation of the system acceleration with nonlinear stiffness and damping coefficient as the parameters and the results are reported. It is also briefly indicated how the proposed method can be successfully used to tune nonlinear vibration absorbers.


Shooting method Parametric continuation Genetic Algorithms Nonlinear systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ficken, F.: The continuation method for nonlinear functional equations. Comm. Pure Appl. Math. 4, 435–456 (1951) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Lahaye, M.E.: Solution of system of transcendental equations. Bull. Cl. Sci., Acad. R. Belg. 5, 805–822 (1948) Google Scholar
  3. 3.
    Davidenko, D.F.: On the approximate solution of systems of nonlinear equations. Ukr. Mat. Zh. 5, 196–206 (1953) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Morozov, N.F.: Nonlinear problems in theory of thin plates. Vestn. Leningr. Univ. 19, 100–124 (1958) Google Scholar
  5. 5.
    Kubicek, M., Marek, M.: Computational Methods in Bifurcation Theory and Dissipative Structures. Springer, New York (1983) zbMATHGoogle Scholar
  6. 6.
    Seydel, R.: From Equilibrium to Chaos: Practical Stability and Bifurcation Analysis. Elsevier, New York (1988) zbMATHGoogle Scholar
  7. 7.
    Grigolyuk, E.I., Shalashilin, V.I.: Problems of Nonlinear Deformation. Kluwer Academic, Dordrecht (1991) CrossRefGoogle Scholar
  8. 8.
    Vannucci, P., Cochelin, B., Damil, N., Potier-Ferry, M.: An asymptotic numerical method to compute bifurcation branches. Int. J. Numer. Methods Eng. 41, 1365–1389 (1997) CrossRefGoogle Scholar
  9. 9.
    Cochelin, B.: A path following technique via an asymptotic numerical method. Comput. Struct. 53, 1181–1192 (1994) zbMATHCrossRefGoogle Scholar
  10. 10.
    Noor, A.K., Peters, J.M.: Tracing post limit paths with reduced basis technique. Computer Methods in Applied Mechanics 28, 217–240 (1981) zbMATHCrossRefGoogle Scholar
  11. 11.
    Padmanabhan, C., Singh, R.: Analysis of periodically excited nonlinear systems by a parametric continuation method. J. Sound Vib. 184, 35–58 (1995) CrossRefGoogle Scholar
  12. 12.
    Padmanabhan, C., Singh, R.: Dynamic analysis of a piecewise nonlinear system subjected to dual harmonic excitation using parametric continuation. J. Sound Vib. 184, 767–799 (1995) zbMATHCrossRefGoogle Scholar
  13. 13.
    Noah, S.T., Sundararajan, P.: Dynamics of forced nonlinear systems using shooting/arc length continuation method—application to rotor systems. ASME J. Vib. Acoust. 119, 9–20 (1997) CrossRefGoogle Scholar
  14. 14.
    Shalashilin, V.I., Kuznetsov, E.B.: Parametric Continuation and Optimal Parameterization in Applied Mathematics and Mechanics. Kluwer Academic, Dordrecht (2003) Google Scholar
  15. 15.
    Burton, T.D.: Introduction to Dynamic System Analysis. McGraw-Hill, New York (1994) Google Scholar
  16. 16.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-Wesley, Reading (1989) Google Scholar
  17. 17.
    Rao, S.S.: Engineering Optimization: Theory and Practice. New Age, New Delhi (1996) Google Scholar
  18. 18.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979) zbMATHGoogle Scholar
  19. 19.
    Den Hartog, J.P.: Mechanical Vibrations. Dover, New York (1985) Google Scholar
  20. 20.
    Pipes, L.: Analysis of a nonlinear dynamic vibration absorber. J. Appl. Mech. 20, 515–518 (1953) zbMATHGoogle Scholar
  21. 21.
    Hunt, J., Nissen, J.C.: The broadband dynamic vibration absorber. J. Sound Vib. 83, 573–578 (1982) CrossRefGoogle Scholar
  22. 22.
    Asami, T., Nishihara, O.: Closed form exact solution to HINF optimization of dynamic vibration absorbers. J. Vib. Acoust. 125, 381–411 (2003) CrossRefGoogle Scholar
  23. 23.
    Viguie, R., Kerschen, G.: Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology. J. Sound Vib. 326, 780–793 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bipin Balaram
    • 1
  • M. D. Narayanan
    • 1
  • P. K. Rajendrakumar
    • 1
  1. 1.Department of Mechanical EngineeringNITCalicutIndia

Personalised recommendations