Nonlinear Dynamics

, Volume 67, Issue 4, pp 2719–2726 | Cite as

Solving nonlinear stochastic differential equations with fractional Brownian motion using reducibility approach

  • Caibin Zeng
  • Qigui Yang
  • Yang Quan Chen
Original Paper


This paper presents some sufficient and necessary conditions for reducing the nonlinear stochastic differential equations (SDEs) with fractional Brownian motion (fBm) to the linear SDEs. The explicit solution of the reduced equation is computed by its integral equation or the variation of parameters technique. Two illustrative examples are provided to demonstrate the applicability of the proposed approach.


Stochastic differential equation Fractional Brownian motion Reducibility Itô formula 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kolmogorov, A.N.: The Wiener spiral and some other interesting curves in Hilbert space. Dokl. Akad. Nauk SSSR 26, 115–118 (1940) Google Scholar
  2. 2.
    Hurst, H.E.: Long-term storage capacity in reservoirs. Trans. Am. Soc. Civ. Eng. 116, 400–410 (1951) Google Scholar
  3. 3.
    Hurst, H.E.: Methods of using long-term storage in reservoirs. ICE Proc. 5, 519–543 (1956) CrossRefGoogle Scholar
  4. 4.
    Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Decreusefond, L., Üstünel, A.S.: Fractional Brownian motion: theory and applications. ESAIM Proc. 5, 75–86 (1998) zbMATHCrossRefGoogle Scholar
  6. 6.
    Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications, Probability and Its Applications. Springer, London (2008) CrossRefGoogle Scholar
  7. 7.
    Mishura, Y.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008) zbMATHCrossRefGoogle Scholar
  8. 8.
    Rogers, L.C.G.: Arbitrage with fractional Brownian motion. Math. Finance 7, 95–105 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dellacherie, C., Meyer, P.A.: Probability and Potentials B. North-Holland, Amsterdam (1982) Google Scholar
  10. 10.
    Lin, S.J.: Stochastic analysis of fractional Brownian motions. Stoch. Stoch. Rep. 55, 121–140 (1995) zbMATHGoogle Scholar
  11. 11.
    Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10, 177–214 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Duncan, T.E., Hu, Y., Pasik-Duncan, B.: Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38, 582–612 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes. Ann. Probab. 29, 766–801 (2000) Google Scholar
  14. 14.
    Elliott, R.C., Van der Hoek, J.: A general fractional white noise theory and applications to finance. Math. Finance 13, 301–330 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Carmona, P., Coutin, L., Montseny, G.: Stochastic integration with respect to fractional Brownian motion. Ann. I. H. Poincaré Probab. Stat. 39, 27–68 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Biagini, F., Øksendal, B., Sulem, A., Wallner, N.: An introduction to white noise theory and Malliavin calculus for fractional Brownian motion. Proc. R. Soc. 460, 347–372 (2004) zbMATHCrossRefGoogle Scholar
  17. 17.
    Jolis, M.: On the Wiener integral with respect to the fractional Brownian motion on an interval. J. Math. Anal. Appl. 330, 1115–1127 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Mandelbrot, B.B.: The variation of certain speculative prices. J. Bus. 36, 394–419 (1963) CrossRefGoogle Scholar
  19. 19.
    Gilden, D.L., Thornton, T., Mallon, M.W.: 1/f noise in human cognition. Science 267, 1837–1839 (1995) CrossRefGoogle Scholar
  20. 20.
    Perez, D.G., Zunino, L., Garavaglia, M.: Modeling turbulent wavefront phase as a fractional Brownian motion: a new approach. J. Opt. Soc. Am. 21, 1962–1969 (2004) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Osorio, I., Frei, M.: Hurst parameter estimation for epileptic seizure detection. Commun. Inf. Syst. 7, 167–176 (2007) MathSciNetGoogle Scholar
  22. 22.
    Doukhan, P., Oppenheim, G., Taqqu, M.S.: Theory and Applications of Long-Range Dependence. Birkhäuser, Basel (2003) zbMATHGoogle Scholar
  23. 23.
    Gard, T.C.: Introduction to Stochastic Differential Equations. Dekker, New York (1988) zbMATHGoogle Scholar
  24. 24.
    Unal, G., Dinler, A.: Exact linearization of one dimensional Itô equations driven by fBm: analytical and numerical solutions. Nonlinear Dyn. 53, 251–259 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Schwartz, E.S.: The stochastic behavior of commodity prices: implications for valuation and hedging. J. Finance 52, 923–973 (1997) CrossRefGoogle Scholar
  26. 26.
    Neuenkirch, A.: Optimal approximation of SDE’s with additive fractional noise. J. Complex. 22, 459–474 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Polansky, P.: Invariant distributions for multipopulation models in random environments. Theor. Popul. Biol. 16, 25–34 (1979) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of SciencesSouth China University of TechnologyGuangzhouP.R. China
  2. 2.Center for Self-Organizing and Intelligent Systems, Electrical and Computer Engineering DepartmentUtah State UniversityLoganUSA

Personalised recommendations