Nonlinear Dynamics

, Volume 67, Issue 4, pp 2599–2608 | Cite as

Fuzzy identification of cutting acoustic emission with extended subtractive cluster analysis

Original Paper

Abstract

This paper presents fuzzy acoustic emission identification in high precision hard turning process based on extended subtractive cluster analysis combined with the least-square estimation method. The fuzzy identification method provides a simple way to arrive at a definite conclusion based upon the information obtained with the difficulty in understanding the exact physics of the machining process. The experimental results prove that the proposed method is efficient and feasible.

Keywords

Fuzzy identification Subtractive clustering Precision machining Acoustic emission Tool wear 

Nomenclature

AE:

Acoustic emission

TCM:

Tool condition monitoring

TSK:

Takagi–Sugeno–Kang

FLS:

Fuzzy logic system

MISO:

Multi-input–single-output

MF:

Membership function

RMS:

Root–mean–square

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ren, Q., Baron, L., Balazinski, M.: Application of type-2 fuzzy estimation on uncertainty in machining: an approach on acoustic emission during turning process. In: The 28th North American Fuzzy Information Processing Society Annual Conference (NAFIPS 2009), Cincinnati, OH (2009) Google Scholar
  2. 2.
    Wang, L.H., Gao, R.X.: Condition Monitoring and Control for Intelligent Manufacturing. Springer Series in Advanced Manufacturing. Springer, Berlin (2006). ISBN: 978-1-84628-268-3 CrossRefGoogle Scholar
  3. 3.
    Iwata, K., Moriwaki, T.: Application of acoustic emission measurement to in-process sensing of tool wear. CIRP Ann. 26(1–2), 19–23 (1977) Google Scholar
  4. 4.
    Liang, S., Dornfeld, D.: Tool wear detection using time series analysis of acoustic emission. J. Eng. Ind. Trans. ASME 111(3), 199–205 (1989) CrossRefGoogle Scholar
  5. 5.
    Marinescu, I., Axinte, D.: A time-frequency acoustic emission-based monitoring technique to identify workpiece surface malfunctions in milling with multiple teeth cutting simultaneously. Int. J. Mach. Tools Manuf. 49(1), 53–65 (2009) CrossRefGoogle Scholar
  6. 6.
    Polito, F., Petri, A., Pontuale, G., Dalton, F.: Analysis of metal cutting acoustic emissions by time series models. Int. J. Adv. Manuf. Technol. 48(9–12), 897–903 (2010) CrossRefGoogle Scholar
  7. 7.
    Vavourakis, V., Protopappas, V.I.C., Fotiadis, D., Polyzos, D.: Numerical determination of modal dispersion and AE signal characterization in waveguides through LBIE/BEM and time-frequency analysis. Comput. Mech. 43(3), 431–441 (2009) MATHCrossRefGoogle Scholar
  8. 8.
    Emel, E., Kannatey-Asibu, Jr.E.: Tool failure monitoring in turning by pattern recognition analysis of AE signal. Trans. ASME J. Eng. Ind. 110, 137–145 (1988) CrossRefGoogle Scholar
  9. 9.
    Li, X., Yuan, Z.: Tool wear monitoring with wavelet packet transform-fuzzy clustering method. Wear 219(2), 145–154 (1998) CrossRefGoogle Scholar
  10. 10.
    Ince, N.F., Kao, C.-S., Kaveh, M., Tewfik, A., Labuz, J.F.: A machine learning approach for locating acoustic emission. EURASIP J. Adv. Signal Process. doi:10.1155/2010/895486 (2010) Google Scholar
  11. 11.
    Menon, A., Boutaghou, Z.: Time-frequency analysis of tribological systems—part I: implementation and interpretation. Tribol. Int. 31(9), 501–510 (1998) CrossRefGoogle Scholar
  12. 12.
    Heil, C., Walnut, D.: Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Serrano, E., Fabio, M.: Application of the wavelet transform to acoustic emission signals processing. IEEE Trans. Signal Process. 44(5), 1270–1275 (1996) CrossRefGoogle Scholar
  14. 14.
    Kamarthi, S., Kumara, S., Cohen, P.: Wavelet representation of acoustic emission in turning process. Intell. Eng. Syst. Artif. Neural Netw. 5, 861–866 (1995) Google Scholar
  15. 15.
    Li, X.: Real-time detection of the breakage of small diameter drills with wavelet transform. Int. J. Adv. Manuf. Technol. 14(8), 539–543 (1998) CrossRefGoogle Scholar
  16. 16.
    Van Dijck, G., Wevers, M., Van Hulle, M.: Wavelet packet decomposition for the identification of corrosion type from acoustic emission signals. Int. J. Wavelets Multiresolut. Inf. Process. 7(4), 513–534 (2009) MATHCrossRefGoogle Scholar
  17. 17.
    Kasashima, N., Mori, K., Ruiz, H.G., Taniguchi, N.: Online failure detection in face milling using discrete wavelet transform. CIRP Ann. 44(1), 483–487 (1995) CrossRefGoogle Scholar
  18. 18.
    Kious, M., Ouahabi, A., Boudraa, M., Serra, R., Cheknane, A.: Detection process approach of tool wear in high speed milling. Measurement 43(10), 1439–1446 (2010) CrossRefGoogle Scholar
  19. 19.
    Zhou, J.H., Pang, C.K., Zhong, Z.W., Lewis, F.L.: Tool wear monitoring using acoustic emissions by dominant-feature identification. IEEE Trans. Instrum. Meas. 60(2), 547–559 (2011) CrossRefGoogle Scholar
  20. 20.
    Griffin, J.M., Chen, X.: Multiple classification of the acoustic emission signals extracted during burn and chatter anomalies using genetic programming. Int. J. Adv. Manuf. Technol. 45(11–12), 1152–1168 (2009) CrossRefGoogle Scholar
  21. 21.
    Li, X.: A brief review: acoustic emission method for tool wear monitoring during turning. Int. J. Mach. Tools Manuf. 42(2), 157–165 (2002) CrossRefGoogle Scholar
  22. 22.
    Darenfed, S., Wu, S.: Polynomial learning networks for cutting tool diagnosis in machining operations. Trans. Can. Soc. Mech. Eng. 16(2), 147–163 (1992) Google Scholar
  23. 23.
    Quan, Y., Zhou, M., Luo, Z.: On-line robust identification of tool-wear via multi-sensor neural-network fusion. Eng. Appl. Artif. Intell. 11(6), 717–722 (1998) CrossRefGoogle Scholar
  24. 24.
    Lee, S.H., Lee, D.: In-process monitoring of drilling burr formation using acoustic emission and a wavelet-based artificial neural network. Int. J. Prod. Res. 46(17), 4871–4888 (2008) MATHCrossRefGoogle Scholar
  25. 25.
    Ren, Q., Baron, L., Balazinski, M.: Type-2 TSK fuzzy filtering and uncertainty estimation for acoustic emission in precision manufacturing. In: Proceedings of the IASTED International Conference Computational Intelligence (IASTED-CI 2009), Honolulu, HI, pp. 170–175 (2009) Google Scholar
  26. 26.
    Ren, Q., Baron, L., Balazinski, M.: Type-2 fuzzy modeling for acoustic emission signal in precision manufacturing. Model. Simul. Eng. 2011(696947) (2011). doi:10.1155/2011/696947
  27. 27.
    Li, Y.Y., Yuan, Z.: On-line tool condition monitoring system with wavelet fuzzy neural network. J. Intell. Manuf. 8, 271–276 (1997) CrossRefGoogle Scholar
  28. 28.
    Kuo, R.J., Cohen, P.H.: Intelligent tool wear estimation system through artifice neural networks and fuzzy modeling. Artif. Intell. Eng. 12(3), 229–242 (1998) CrossRefGoogle Scholar
  29. 29.
    Lezanski, P.: An intelligent system for grinding wheel condition monitoring. J. Mater. Process. Technol. 109(3), 258–263 (2001) CrossRefGoogle Scholar
  30. 30.
    Sun, J., Rahman, M., Wong, Y.S., Hong, G.S.: Multiclassification of tool wear with support vector machine by manufacturing loss consideration. Int. J. Mach. Tools Manuf. 44(11), 1179–1187 (2004) CrossRefGoogle Scholar
  31. 31.
    Deiab, I., Assaleh, K., Hammad, F.: On modeling of tool wear using sensor fusion and polynomial classifiers. Mech. Syst. Signal Process. 23(5), 1719–1729 (2009) CrossRefGoogle Scholar
  32. 32.
    Malekian, M., Park, S.S., Jun, M.B.G.: Tool wear monitoring of micro-milling operations. J. Mater. Process. Technol. 209(10), 4903–4914 (2009) CrossRefGoogle Scholar
  33. 33.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985) MATHGoogle Scholar
  35. 35.
    Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Johansen, T., Foss, B.: Identification of non-linear system structure and parameters using regime decomposition. Automatic 31(2), 321–326 (1995) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2, 267–278 (1994) MathSciNetGoogle Scholar
  38. 38.
    Demirli, K., Cheng, S.X., Muthukumaran, P.: Subtractive clustering based on modelling of job sequencing with parametric search. Fuzzy Sets Syst. 137, 235–270 (2003) MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Ren, Q., Baron, L., Balazinski, M., Jemelniak, K.: Tool condition monitoring using the tsk fuzzy approach based on subtractive clustering method. In: News Frontiers in Applied Artificial Intelligence, pp. 52–61. Springer, Berlin (2008) CrossRefGoogle Scholar
  40. 40.
    Ren, Q., Baron, L., Balazinski, M., Jemelniak, K.: TSK fuzzy modeling for tool wear condition in turning processes: an experimental study. Eng. Appl. Artif. Intell. 24(2), 260–265 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringÉcole Polytechnique de MontréalMontréalCanada

Personalised recommendations