Advertisement

Nonlinear Dynamics

, Volume 67, Issue 4, pp 2519–2525 | Cite as

Projective and lag synchronization between general complex networks via impulsive control

  • Qunjiao Zhang
  • Junchan Zhao
Original Paper

Abstract

This paper mainly investigates the projective and lag synchronization between general complex networks via impulsive control. A general drive complex network and an impulsively controlled slave network are presented in the model. Specially, the coupling matrix in this model is not assumed to be symmetric, diffusive or irreducible. Some criteria and corollaries are, respectively, derived for the projective synchronization and lag synchronization between the presented impulsively controlled complex networks. Finally, the results are illustrated by complex networks composed of the chaotic Lorenz systems. All the numerical simulations verify the correctness of the theoretical results.

Keywords

Complex networks Projective synchronization Lag synchronization Impulsive control Lorenz system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001) CrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002) zbMATHCrossRefGoogle Scholar
  3. 3.
    Zhou, J., Liu, Z., Chen, G.: Dynamics of delayed neural networks. Neural Netw. 17(1), 87–101 (2004) zbMATHCrossRefGoogle Scholar
  4. 4.
    Li, C., Sun, W., Kurths, J.: Synchronization between two coupled complex networks. Phys. Rev. E 76(4), 046204 (2007) CrossRefGoogle Scholar
  5. 5.
    Hong, H., Choi, M.Y., Kim, B.J.: Synchronization on small-world networks. Phys. Rev. E 65(5), 26–139 (2002) Google Scholar
  6. 6.
    Lü, J., Yu, X.H., Chen, G., Cheng, D.Z.: Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits Syst. I 51(4), 787–796 (2004) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rao, P., Wu, Z., Liu, M.: Adaptive projective synchronization of dynamical networks with distributed time delays. Nonlinear Dyn. doi: 10.1007/s11071-011-0100-9
  8. 8.
    Wang, X., Wang, M.: Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems. Nonlinear Dyn. 62(3), 567–571 (2010) CrossRefGoogle Scholar
  9. 9.
    Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50(6), 841–846 (2005) CrossRefGoogle Scholar
  10. 10.
    Li, Z., Chen, G.: Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst. II 53(1), 28–33 (2006) CrossRefGoogle Scholar
  11. 11.
    Mahmoud, G., Mahmoud, E.: Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dyn. doi: 10.1007/s11071-011-0091-6
  12. 12.
    Li, Z., Feng, G., Hill, D.: Controlling complex dynamical networks with coupling delays to a desired orbit. Phys. Lett. A 359(1), 42–46 (2006) zbMATHCrossRefGoogle Scholar
  13. 13.
    Lu, J., Cao, J.: Adaptive synchronization of uncertain dynamical networks with delayed coupling. Nonlinear Dyn. 53(1–2), 107–115 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Zhou, J., Lu, J.: Topology identification of weighted complex dynamical networks. Physica A 386, 481–491 (2007) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhou, J., Chen, T., Xiang, L.: Robust synchronization of delayed neural networks based on adaptive control and parameters identification. Chaos Solitons Fractals 27, 905–913 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Wang, X.F., Chen, G.: Pinning control of scale-free dynamical networks. Physica A 310, 521–531 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Xiang, L., Zhu, J.: On pinning synchronization of general coupled networks. Nonlinear Dyn. 64(4), 339–348 (2011) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhou, J., Yu, W., Li, X.M., Small, M., Lu, J.A.: Identifying the topology of a coupled FitzHugh–Nagumo neurobiological network via a pinning mechanism. IEEE Trans. Neural Netw. 20(10), 1679–1684 (2009) CrossRefGoogle Scholar
  19. 19.
    Lu, J., Hob, W.C., Cao, J.: A unified synchronization criterion for impulsive dynamical networks. Automatica 46, 1215–1221 (2010) zbMATHCrossRefGoogle Scholar
  20. 20.
    Zhou, J., Wu, Q.J., Xiang, L., Cai, S.M., Liu, Z.R.: Impulsive synchronization seeking in general complex delayed dynamical networks. Nonlinear Anal. Hybrid Syst. 5(3), 513–524 (2011) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Cai, S.M., Zhou, J., Xiang, L., Liu, Z.R.: Robust impulsive synchronization of complex delayed dynamical networks. Phys. Lett. A 372, 4990–4995 (2008) zbMATHCrossRefGoogle Scholar
  22. 22.
    Zhou, J., Wu, Q.J.: Exponential stability of impulsive delayed linear differential equations. IEEE Trans. Circuits Syst. II, Express Briefs 56, 744–748 (2009) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhao, Y., Yang, Y.: The impulsive control synchronization of the drive-response complex system. Phys. Lett. A 372, 7165–7171 (2008) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.College of Mathematics and Computer ScienceWuhan Textile UniversityWuhanChina

Personalised recommendations