Nonlinear Dynamics

, Volume 67, Issue 4, pp 2455–2465 | Cite as

A novel bounded 4D chaotic system

Original Paper

Abstract

This paper presents a novel bounded four-dimensional (4D) chaotic system which can display hyperchaos, chaos, quasiperiodic and periodic behaviors, and may have a unique equilibrium, three equilibria and five equilibria for the different system parameters. Numerical simulation shows that the chaotic attractors of the new system exhibit very strange shapes which are distinctly different from those of the existing chaotic attractors. In addition, we investigate the ultimate bound and positively invariant set for the new system based on the Lyapunov function method, and obtain a hyperelliptic estimate of it for the system with certain parameters.

Keywords

Hyperchaos Ultimate bound Positively invariant set Lyapunov function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) CrossRefGoogle Scholar
  2. 2.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002) MATHCrossRefGoogle Scholar
  4. 4.
    Qi, G., Chen, G., Du, S., Chen, Z., Yuan, Z.: Analysis of a new chaotic system. Physica A 352, 295–308 (2005) CrossRefGoogle Scholar
  5. 5.
    Chen, Z., Yang, Y., Qi, G., Yuan, Z.: A novel hyperchaos system only with one equilibrium. Phys. Lett. A 360, 696–701 (2007) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Wang, L.: 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Dyn. 56, 453–462 (2009) MATHCrossRefGoogle Scholar
  7. 7.
    Wang, L.: Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors. Chaos 19, 013107 (2009) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wang, Z., Qi, G., Sun, Y., van Wyk, M.A., van Wyk, B.J.: A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems. Nonlinear Dyn. 60, 443–457 (2010) MATHCrossRefGoogle Scholar
  9. 9.
    Dadras, S., Momeni, H., Qi, G.: Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos. Nonlinear Dyn. 62, 391–405 (2010) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Dadras, S., Momeni, H.: Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D nonlinear smooth autonomous system. Phys. Lett. A 374, 1368–1373 (2010) CrossRefGoogle Scholar
  11. 11.
    Dadras, S., Momeni, H.: Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system. Chin. Phys. B 19, 060506 (2010) CrossRefGoogle Scholar
  12. 12.
    Zhang, J., Tang, W.: Analysis and control for a new chaotic system via piecewise linear feedback. Chaos Solitons Fractals 42, 2181–2190 (2009) MATHCrossRefGoogle Scholar
  13. 13.
    Zhang, J., Tang, W.: Control and synchronization for a class of new chaotic systems via linear feedback. Nonlinear Dyn. 58, 675–686 (2009) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Xu, F., Yu, P.: Chaos control and chaos synchronization for multi-scroll chaotic attractors generated using hyperbolic functions. J. Math. Anal. Appl. 362, 252–274 (2010) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Zhang, J., Tang, W.: A chaotic system with Hölder continuity. Nonlinear Dyn. 62, 761–768 (2010) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Leonov, G.: Bound for attractors and the existence of homoclinic orbit in the Lorenz system. J. Appl. Math. Mech. 65, 19–32 (2001) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Shu, Y., Xu, H., Zhao, Y.: Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization. Chaos Solitons Fractals 42, 2852–2857 (2009) MATHCrossRefGoogle Scholar
  18. 18.
    Liao, X.: On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization. Sci. China Ser. E 34, 1404–1419 (2004) Google Scholar
  19. 19.
    Li, D., Lu, J., Wu, X., Chen, G.: Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. J. Math. Anal. Appl. 323, 844–853 (2006) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Suzuki, M., Sakamoto, N., Yasukochi, T.: A butterfly-shaped localization set for the Lorenz attractor. Phys. Lett. A 372, 2614–2617 (2008) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Wang, P., Li, D., Hu, Q.: Bounds of the hyper-chaotic Lorenz–Stenflo system. Commun. Nonlinear Sci. Numer. Simul. 15, 2514–2520 (2010) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Yang, Q., Liu, Y.: A hyperchaotic system from a chaotic system with one saddle and two stable node-foci. J. Math. Anal. Appl. 360, 293–306 (2009) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lefchetz, S.: Differential Equations: Geometric Theory. Interscience, New York (1963) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Systems EngineeringTianjin UniversityTianjinChina

Personalised recommendations