Nonlinear Dynamics

, Volume 67, Issue 4, pp 2343–2351 | Cite as

Open image in new window sensor fault detection observer design for nonlinear systems in Takagi–Sugeno’s form

  • Sung Chul Jee
  • Ho Jae LeeEmail author
  • Young Hoon Joo
Original Paper


This paper addresses sensor fault detection observer design problems for discrete- and continuous-time nonlinear systems in Takagi–Sugeno’s (T–S) form. It is desired that the fault detection observer is as sensitive to fault and robust against disturbance as possible. To this end, sufficient conditions for stable T–S fuzzy model-based observer design with Open image in new window performance are derived in terms of linear matrix inequalities in both cases. An example on the backing-up problem of a truck-trailer is provided to illustrate the effectiveness of the proposed methodology.


Fault detection Takagi–Sugeno (T–S) fuzzy system Observer Open image in new window performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ding, S.X.: Model-based Fault Diagnosis Techniques. Springer, Berlin (2008) Google Scholar
  2. 2.
    Edwards, C., Spurgeon, S.K., Patton, R.J.: Sliding mode observers for fault detection and isolation. Automatica 36, 541–553 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Guo, J., Huang, X., Cui, Y.: Design and analysis of robust fault detection filter using LMI tools. Comput. Math. Appl. 57, 1743–1747 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hwang, I., Kim, S., Kim, Y., Seah, C.: A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control Syst. Technol. 18(3), 636–653 (2010) CrossRefGoogle Scholar
  5. 5.
    Lee, H.J., Park, J.B., Chen, G.: Robust fuzzy control of nonlinear systems with parametric uncertainties. IEEE Trans. Fuzzy Syst. 9(2), 369–379 (2001) CrossRefGoogle Scholar
  6. 6.
    Li, L., Zhou, D.: Fast and robust fault diagnosis for a class of nonlinear systems: detectability analysis. Comput. Chem. Eng. 28, 2635–2646 (2004) CrossRefGoogle Scholar
  7. 7.
    Liu, J., Wang, J.L., Yang, G.H.: An LMI approach to minimum sensitivity analysis with application to fault detection. Automatica 41, 1995–2004 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Nguang, S.K., Shi, P., Ding, S.: Fault detection for uncertain fuzzy systems: an LMI approach. IEEE Trans. Fuzzy Syst. 15(6), 1251–1262 (2007) CrossRefGoogle Scholar
  9. 9.
    Persis, C.D., Isidori, A.: A geometric approach to nonlinear fault detection and isolation. IEEE Trans. Autom. Control 46(6), 853–865 (2001) zbMATHCrossRefGoogle Scholar
  10. 10.
    Pertew, A., Marquez, H.J., Zhao, Q.: LMI-based sensor fault diagnosis for nonlinear Lipschitz systems. Automatica 43, 1464–1469 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Tan, C.P., Edwards, C.: Multiplicative fault reconstruction using sliding mode observers. In: Asian Control Conference, vol. 2, pp. 957–962 (2004) Google Scholar
  12. 12.
    Tanaka, K., Sano, M.: A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer. IEEE Trans. Fuzzy Syst. 2, 119–134 (1994) CrossRefGoogle Scholar
  13. 13.
    Tianfield, H., Unland, R.: Towards autonomic computing systems. Eng. Appl. Artif. Intell. 17, 689–699 (2004) CrossRefGoogle Scholar
  14. 14.
    Wang, J.L., Yang, G.H., Liu, J.: An LMI approach to Open image in new window index and mixed Open image in new window fault detection observer design. Automatica 43, 1656–1665 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Wei, X., Verhaegen, M.: LMI solutions to the mixed Open image in new window fault detection observer design for linear parameter-varying systems. Int. J. Adapt. Control Signal Process. 25, 114–136 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Zhao, Y., Lam, J., Gao, H.: Fault detection for fuzzy systems with intermittent measurements. IEEE Trans. Fuzzy Syst. 17(2), 398–410 (2009) CrossRefGoogle Scholar
  17. 17.
    Zheng, Y., Fang, H., Wang, H.O.: Takagi–Sugeno fuzzy-model-based fault detection for networked control systems with Markov delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 36(4), 924–929 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Electronic EngineeringInha UniversityIncheonKorea
  2. 2.School of Electronic and InformationKunsan National UniversityKunsanKorea

Personalised recommendations