Nonlinear Dynamics

, Volume 67, Issue 3, pp 2081–2088

An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts

Original Paper

Abstract

This paper studies the attitude control problem of spacecrafts with flexible appendages. It is well known that the unwanted vibration modes, model uncertainty and space environmental disturbances may cause degradation of the performance of attitude control systems for a flexible spacecraft. In this paper, the vibration from flexible appendages is modeled as a derivative-bounded disturbance to the attitude control system of the rigid hub. A disturbance-observer-based control (DOBC) is formulated for feedforward compensation of the elastic vibration. The model uncertainty and space environmental disturbances as well as other noises are merged into an “equivalent” disturbance. We design a composite controller with a hierarchical architecture by combining DOBC and PD control, where DOBC is used to reject the vibration effect from the flexible appendages. Numerical simulations are performed to demonstrate that by using the composite hierarchical control law, disturbances can be effectively attenuated and the robust dynamic performances be enhanced.

Keywords

Flexible spacecraft PD control Disturbance observer (DO) Multiple disturbances Vibration control Composite hierarchical anti-disturbance control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, A.J., Gray, G.L., Mazzoleni, A.P.: Nonlinear spacecraft dynamics with flexible appendage, damping, and moving internal submasses. J. Guid. Control Dyn. 42(3), 605–615 (2001) CrossRefGoogle Scholar
  2. 2.
    Nagata, T., Modi, V.J.M., Matsuo, H.: Dynamics and control of flexible multibody systems part I: general formulation with an order N forward dynamics. Acta Astronaut. 49(11), 581–594 (2001) CrossRefGoogle Scholar
  3. 3.
    Ben-Asher, J., Burns, J.A., CliO, E.M.: Time optimal slewing of flexible spacecraft. J. Guid. Control Dyn. 15, 360–367 (1992) CrossRefMATHGoogle Scholar
  4. 4.
    Bolonkin, A.A., Khot, N.S.: Optimal bounded control design for vibration suppression. Acta Astronaut. 38(10), 803–813 (1996) CrossRefGoogle Scholar
  5. 5.
    Song, G., Kotejoshyer, B.: Vibration reduction of flexible structures during slew operations. Int. J. Acoust. Vib. 7(2), 105–109 (2002) Google Scholar
  6. 6.
    Chen, Y.P., Lo, S.C.: Sliding mode controller design for spacecraft attitude tracking maneuvers. IEEE Trans. Aerosp. Electron. Syst. 29(4), 1328–1333 (1993) CrossRefGoogle Scholar
  7. 7.
    Crassidis, J.L., Markley, F.L.: Sliding mode control using modified Rodrigues parameters. J. Guid. Control Dyn. 19(6), 1381–1383 (1996) CrossRefMATHGoogle Scholar
  8. 8.
    Gennaro, S.D.: Active vibration suppression in flexible spacecraft attitude tracking. J. Guid. Control Dyn. 21(3), 400–408 (1998) CrossRefGoogle Scholar
  9. 9.
    Gennaro, S.D.: Output stabilization of flexible spacecraft with active vibration suppression. IEEE Trans. Aerosp. Electron. Syst. 39(3), 747–759 (2003) CrossRefGoogle Scholar
  10. 10.
    Hu, Q.L., Ma, G.F.: Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerosp. Sci. Technol. 9, 307–317 (2005) CrossRefMATHGoogle Scholar
  11. 11.
    Hu, Q.L.: Variable structure maneuvering control with time-varying sliding surface and active vibration damping of flexible spacecraft with input saturation. Acta Astronaut. 64, 1085–1108 (2009) CrossRefGoogle Scholar
  12. 12.
    Ballois, S.L., Duc, G.: H control of an earth observation satellite. J. Guid. Control Dyn. 19(3), 628–635 (1996) CrossRefMATHGoogle Scholar
  13. 13.
    Byun, K.W., Wie, B., Geller, D.: Robust H control design for the space station with structured parameter uncertainty. J. Guid. Control Dyn. 14(6), 1115–1122 (1996) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Charbonnel, C.: H and LMI attitude control design: towards performances and robustness enhancement. Acta Astronaut. 54, 307–314 (2004) CrossRefGoogle Scholar
  15. 15.
    Guo, L., Chen, W.H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15, 109–125 (2005) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Guo, L., Feng, C.B., Chen, W.H.: A survey of disturbance-observer-based control for dynamic nonlinear system. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 13, 79–84 (2006) Google Scholar
  17. 17.
    Ishikawa, J., Tomizuka, M.: Pivot friction compensation using an accelerometer and a disturbance observer for hard disk. IEEE/ASME Trans. Mechatron. 3, 194–201 (1998) CrossRefGoogle Scholar
  18. 18.
    Chen, W.H.: Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. J. Guid. Control Dyn. 26(1), 161–166 (2003) CrossRefGoogle Scholar
  19. 19.
    Wei, X., Guo, L.: Composite disturbance-observer-based control and H control for complex continuous models. Int. J. Robust Nonlinear Control 20(1), 106–118 (2010) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Isidori, A., Byrnes, C.I.: Output regulation of nonlinear systems. IEEE Trans. Autom. Control 35, 131–140 (1990) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Marino, R., Tomei, P.: Adaptive tracking and disturbance rejection for uncertain nonlinear systems. IEEE Trans. Autom. Control 50, 90–95 (2005) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Wu, H.: Continuous adaptive robust controllers guaranteeing uniform ultimate boundedness for uncertain nonlinear systems. Int. J. Control 72, 115–122 (1999) CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.National Key Laboratory on Aircraft Control Technology, School of Instrumentation Science and Opto-Electronics EngineeringBeihang UniversityBeijingChina

Personalised recommendations