Nonlinear Dynamics

, Volume 67, Issue 2, pp 1135–1146 | Cite as

On forced oscillations of a simple model for a novel wave energy converter

Non-resonant instability, limit cycles, and bounded oscillations
  • Bayram Orazov
  • Oliver M. O’Reilly
  • Xuance Zhou
Original Paper

Abstract

The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass–spring–dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed.

Keywords

Hybrid dynamical systems Piecewise-smooth dynamical systems Limit cycles State-dependent switching Forced vibrations Energy converters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P., Nordmark, A.B., Olivar Tost, G., Piiroinen, P.T.: Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50(4), 629–701 (2008). doi:10.1137/050625060 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, London (2008) MATHGoogle Scholar
  3. 3.
    Flieller, D., Riedinger, P., Louis, J.P.: Computation and stability of limit cycles in hybrid systems. Nonlinear Anal., Theory Methods Appl. 64(2), 352–367 (2006). doi:10.1016/j.na.2005.06.054 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Goebel, R., Sanfelice, R., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009). doi:10.1109/MCS.2008.931718 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gonçalves, J.M.: Regions of stability for limit cycle oscillations in piecewise linear systems. IEEE Trans. Autom. Control 50(11), 1877–1882 (2005). doi:10.1109/TAC.2005.858674 CrossRefGoogle Scholar
  6. 6.
    Halse, C.K., Wilson, R.E., di Bernardo, M., Homer, M.E.: Coexisting solutions and bifurcations in mechanical oscillators with backlash. J. Sound Vib. 305(4–5), 854–885 (2007). doi:10.1016/j.jsv.2007.05.010 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hiskens, I.A.: Stability of hybrid system limit cycles: application to the compass gait biped robot. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 1, pp. 774–779 (2001). doi:10.1109/.2001.980200 Google Scholar
  8. 8.
    Hiskens, I.A., Reddy, P.B.: Switching-induced stable limit cycles. Nonlinear Dyn. 50(3), 575–585 (2007). doi:10.1007/s11071-006-9175-0 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kessler, P., O’Reilly, O.M.: The ringing of Euler’s disk. Regul. Chaotic Dyn. 7(1), 49–60 (2002). doi:10.1070/RD2002v007n01ABEH000195 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: On the transient dynamics of a multi-degree-of-freedom friction oscillator: A new mechanism for disc brake noise. J. Sound Vib. 287(4–5), 901–917 (2005). doi:10.1016/j.jsv.2004.12.005 CrossRefGoogle Scholar
  11. 11.
    Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. In: Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004) MATHGoogle Scholar
  12. 12.
    Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003) CrossRefMATHGoogle Scholar
  13. 13.
    Liberzon, D., Morse, S.A.: Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19, 59–70 (1999). doi:10.1109/37.793443 CrossRefGoogle Scholar
  14. 14.
    Orazov, B., O’Reilly, O.M., Savaş, O.: On the dynamics of a novel ocean wave energy converter. J. Sound Vib. 329(24), 5058–5069 (2010). doi:10.1016/j.jsv.2010.07.007 CrossRefGoogle Scholar
  15. 15.
    Rubensson, M., Lennartson, B.: Stability of limit cycles in hybrid systems using discrete-time Lyapunov techniques. In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 2, pp. 1397–1402 (2000). doi:10.1109/CDC.2000.912053 Google Scholar
  16. 16.
    Rubensson, M., Lennartson, B.: Global convergence analysis for piecewise linear systems applied to limit cycles in a DC/AC converter. In: Proceedings of the American Control Conference, vol. 2, pp. 1272–1277 (2002). doi:10.1109/ACC.2002.1023195 Google Scholar
  17. 17.
    van der Schaft, A.J., Schumacher, J.M.: An Introduction to Hybrid Dynamical Systems. In: Lecture Notes in Control and Information Sciences, vol. 251. Springer, London (2000). doi:10.1007/BFb0109998 MATHGoogle Scholar
  18. 18.
    Thota, P., Dankowicz, H.: TC-HAT \((\widehat{\mathrm{TC}})\): A novel toolbox for the continuation of periodic trajectories in hybrid dynamical systems. SIAM J. Appl. Dyn. Syst. 7(4), 1283–1322 (2008). doi:10.1137/070703028 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wirkus, S., Rand, R., Ruina, A.: How to pump a swing. Coll. Math. J. 29(4), 266–275 (1998) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bayram Orazov
    • 1
  • Oliver M. O’Reilly
    • 1
  • Xuance Zhou
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Department of Mechanical EngineeringKing Abdullah University of Science and TechnologyJeddahKingdom of Saudi Arabia

Personalised recommendations