Nonlinear Dynamics

, Volume 68, Issue 3, pp 305–328

Complete dynamical analysis of a neuron model

Original Paper
  • 504 Downloads

Abstract

In-depth understanding of the generic mechanisms of transitions between distinct patterns of the activity in realistic models of individual neurons presents a fundamental challenge for the theory of applied dynamical systems. The knowledge about likely mechanisms would give valuable insights and predictions for determining basic principles of the functioning of neurons both isolated and networked. We demonstrate a computational suite of the developed tools based on the qualitative theory of differential equations that is specifically tailored for slow–fast neuron models. The toolkit includes the parameter continuation technique for localizing slow-motion manifolds in a model without need of dissection, the averaging technique for localizing periodic orbits and determining their stability and bifurcations, as well as a reduction apparatus for deriving a family of Poincaré return mappings for a voltage interval. Such return mappings allow for detailed examinations of not only stable fixed points but also unstable limit solutions of the system, including periodic, homoclinic and heteroclinic orbits. Using interval mappings we can compute various quantitative characteristics such as topological entropy and kneading invariants for examinations of global bifurcations in the neuron model.

Keywords

Neuron model Bifurcation Bursting Bistability Poincaré mapping Parameter continuation Complex dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steriade, M., McCormick, D.A., Sejnowski, T.J.: Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134), 679–685 (1993) CrossRefGoogle Scholar
  2. 2.
    Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22(7), 2963–2976 (2002) Google Scholar
  3. 3.
    Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.: Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks. J. Neurophysiol. 84(2), 1076–1087 (2000) Google Scholar
  4. 4.
    Bazhenov, M., Timofeev, I., Fröhlich, F., Sejnowski, T.J.: Cellular and network mechanisms of electrographic seizures. Drug Discov. Today Dis. Models 5(1), 45–57 (2008) CrossRefGoogle Scholar
  5. 5.
    Cymbalyuk, G.S., Gaudry, Q., Masino, M.A., Calabrese, R.L.: Bursting in leech heart interneurons: Cell-autonomous and network-based mechanisms. J. Neurosci. 22(24), 10580–10592 (2002) Google Scholar
  6. 6.
    Bertram, R., Butte, M.J., Kiemel, T., Sherman, A.: Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57(3), 413–439 (1995) MATHGoogle Scholar
  7. 7.
    Canavier, C.C., Baxter, D.A., Clark, J.W., Byrne, J.H.: Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity. J. Neurophysiol. 69(6), 2252–2257 (1993) Google Scholar
  8. 8.
    Butera, R.J.: Multirhythmic bursting. Chaos 8(1), 274–284 (1998) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Frohlich, F., Bazhenov, M.: Coexistence of tonic firing and bursting in cortical neurons. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 74(3 Pt 1), 031922 (2006) CrossRefGoogle Scholar
  10. 10.
    Hounsgaard, J., Kiehn, O.: Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. J. Physiol. 414, 265 (1898) Google Scholar
  11. 11.
    Lechner, H., Baxter, F., Clark, C., Byrne, J.: Bistability and its regulation by Serotonin in the endogenously bursting neuron r15 in aplysia. J. Neurophysiol. 75, 957 (1996) Google Scholar
  12. 12.
    Turrigiano, G., Marder, E., Abbott, L.: Cellular short-term memory from a slow potassium conductance. J. Neurophysiol. 75, 963–966 (1996) Google Scholar
  13. 13.
    Kopell, N.: Toward a theory of modelling central pattern generators. In: Cohen, A.H., Rossingol, S., Grillner, S. (eds.) Neural Control of Rhythmic Movements in Vertebrates. Wiley, New York (1988) Google Scholar
  14. 14.
    Marder, E., Calabrese, R.L.: Principles of rhythmic motor pattern generation. Physiol. Rev. 76(3), 687–717 (1996) Google Scholar
  15. 15.
    Briggman, K.L., Kristan, W.B.: Multifunctional pattern-generating circuits. Annu. Rev. Neurosci. 31, 271–294 (2008) CrossRefGoogle Scholar
  16. 16.
    Kristan, W.B.: Neuronal decision-making circuits. Curr. Biol. 18(19), R928–R932 (2008) CrossRefGoogle Scholar
  17. 17.
    Shilnikov, A.L., Gordon, R., Belykh, I.: Polyrhythmic synchronization in bursting networking motifs. Chaos 18(3), 037120 (2008) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wojcik, J., Clewley, R., Shilnikov, A.L.: Order parameter for bursting polyrhythms in multifunctional central pattern generators. Phys. Rev. E, Stat. Nonlinear Soft Matter. Phys. (2011, in press) Google Scholar
  19. 19.
    Rabinovich, M.I., Varona, P., Silverston, A.L., Abarbanel, H.D.: Dynamics principles in neuroscience. Rev. Mod. Phys. 78(4), 1213–1265 (2006) CrossRefGoogle Scholar
  20. 20.
    Rinzel, J.: Bursting oscillations in an excitable membrane model. In: Lecture Notes in Mathematics, vol. 1151, pp. 304–316 (1985) Google Scholar
  21. 21.
    Rinzel, J., Wang, X.J.: Oscillatory and bursting properties of neurons. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 686–691. MIT Press, Cambridge (1995) Google Scholar
  22. 22.
    Rinzel, J., Ermentrout, B.: Analysis of neural excitability and oscillations. In: Koch, C., Segev, I. (eds.) Computational Neuroscience, pp. 135–169. MIT Press, Cambridge (1998) Google Scholar
  23. 23.
    Guckenheimer, J.: Towards a global theory of singularly perturbed systems. Prog. Nonlinear Differ. Equ. Appl. 19, 214–225 (1996) MathSciNetGoogle Scholar
  24. 24.
    Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience. The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007) Google Scholar
  26. 26.
    Tikhonov, A.N.: On the dependence of solutions of differential equations from a small parameter. Mat. Sb. 22(64), 193–204 (1948) Google Scholar
  27. 27.
    Pontryagin, L.S., Rodygin, L.V.: Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing derivatives. Sov. Math. Dokl. 1, 611–619 (1960) MathSciNetMATHGoogle Scholar
  28. 28.
    Fenichel, F.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Mischenko, E.F., Rozov, N.K.: Differential Equations with Small Parameters and Relaxation Oscillations. Plenum, New York (1980) Google Scholar
  30. 30.
    Mischenko, E.F., Kolesov, Yu.S., Kolesov, A.Yu., Rozov, N.Kh.: Asymptotic Methods in Singularly Perturbed Systems. Monographs in Contemporary Mathematics. Consultants Bureau, New York (1994) CrossRefGoogle Scholar
  31. 31.
    Jones, C.K.R.T., Kopell, N.: Tracking invariant-manifolds with differential forms in singularly perturbed systems. J. Differ. Equ. 108(1), 64–88 (1994) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Arnold, V.I., Afraimovich, V.S., Ilyashenko, Yu.S., Shilnikov, L.P.: Dynamical Systems. Vol. V: Bifurcation Theory. Encyclopaedia of Mathematical Sciences. Springer, Berlin (1994) Google Scholar
  33. 33.
    Terman, D.: The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Sci. 2(2), 135–182 (1992) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Holden, A.V., Fan, Y.S.: From simple to simple bursting oscillatory behaviour via intermittent chaos in the Rose–Hindmarsh model for neuronal activity. Chaos Solitons Fractals 2, 349–369 (1992) MATHCrossRefGoogle Scholar
  35. 35.
    Wang, X.J.: Genesis of bursting oscillations in the Hindmarsh–Rose model and homoclinicity to a chaotic saddle. Physica D 62(1–4), 263–274 (1993) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., Moss, F.: Homoclinic bifurcation in a Hodgkin–Huxley model of thermally sensitive neurons. Chaos 10(1), 231–239 (2000) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Deng, B., Hines, G.: Food chain chaos due to Shilnikov’s orbit. Chaos 12(3), 533–538 (2002) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Shilnikov, A.L., Rulkov, N.F.: Subthreshold oscillations in a map-based neuron model. Phys. Lett. A 328(2–3), 177–184 (2004) MATHCrossRefGoogle Scholar
  39. 39.
    Shilnikov, A.L., Calabrese, R.L., Cymbalyuk, G.: Mechanism of bistability: Tonic spiking and bursting in a neuron model. Phys. Rev. E 71, 056214 (2005) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Cymbalyuk, G., Shilnikov, A.L.: Coexistence of tonic spiking oscillations in a leech neuron model. J. Comput. Neurosci. 18(3), 255–263 (2005) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Channell, P., Cymbalyuk, G., Shilnikov, A.L.: Applications of the Poincare mapping technique to analysis of neuronal dynamics. Neurocomputing 70, 10–12 (2007) CrossRefGoogle Scholar
  42. 42.
    Shilnikov, L.P., Shilnikov, A.L., Turaev, D., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics, vol. 1. World Scientific, Singapore (1998) MATHCrossRefGoogle Scholar
  43. 43.
    Shilnikov, L.P., Shilnikov, A.L., Turaev, D., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics, vol. 2. World Scientific, Singapore (2001) MATHCrossRefGoogle Scholar
  44. 44.
    Shilnikov, A.L., Shilnikov, L.P., Turaev, D.V.: Blue sky catastrophe in singularly perturbed systems. Mosc. Math. J. 5(1), 205–211 (2005) MathSciNetGoogle Scholar
  45. 45.
    Chay, T.R.: Chaos in a three-variable model of an excitable cell. Physica D 16(2), 233–242 (1985) MATHCrossRefGoogle Scholar
  46. 46.
    Shilnikov, A.L., Rulkov, N.F.: Origin of chaos in a two-dimensional map modelling spiking-bursting neural activity. Int. J. Bifurc. Chaos 13(11), 3325–3340 (2003) MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Medvedev, G.M.: Reduction of a model of an excitable cell to a one-dimensional map. Physica D 202(1–2), 87–106 (2005) Google Scholar
  48. 48.
    Griffiths, R.E., Pernarowski, M.C.: Return map characterizations for a model of bursting with two slow variables. SIAM J. Appl. Math. 66(6), 1917–1948 (2006) MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Channell, P., Fuwape, I., Neiman, A.B., Shilnikov, A.L.: Variability of bursting patterns in a neuron model in the presence of noise. J. Comput. Neurosci. 27(3), 527–542 (2009) MathSciNetCrossRefGoogle Scholar
  50. 50.
    Channell, P., Cymbalyuk, G., Shilnikov, A.: Origin of bursting through homoclinic spike adding in a neuron model. Phys. Rev. Lett. 98(13), 134101 (2007) CrossRefGoogle Scholar
  51. 51.
    Wojcik, J., Shilnikov, A.L.: Voltage interval mappings for dynamics transitions in elliptic bursters. Physica D (2011, accepted) Google Scholar
  52. 52.
    Shilnikov, A.L.: On bifurcations of the Lorenz attractor in the Shimizu–Morioka model. Physica D 62(1–4), 338–346 (1993) MathSciNetCrossRefGoogle Scholar
  53. 53.
    Belykh, V.N., Belykh, I.V., Colding-Jorgensen, M., Mosekilde, E.: Homoclinic bifurcations leading to bursting oscillations in cell models. Eur. Phys. J. E, Soft Matter 3(3), 205–219 (2000) CrossRefGoogle Scholar
  54. 54.
    Shilnikov, A.L., Cymbalyuk, G.: Homoclinic saddle-node orbit bifurcations en route between tonic spiking and bursting in neuron models, invited review. Regul. Chaotic Dyn. 3(9), 281–297 (2004) MathSciNetCrossRefGoogle Scholar
  55. 55.
    Doiron, B., Laing, C., Longtin, A., Maler, L.: Ghostbursting: A novel neuronal burst mechanism. J. Comput. Neurosci. 12(1), 5–25 (2002) CrossRefGoogle Scholar
  56. 56.
    Laing, C.R., Doiron, B., Longtin, A., Noonan, L., Turner, R.W., Maler, L.: Type I burst excitability. J. Comput. Neurosci. 14(3), 329–342 (2003) CrossRefGoogle Scholar
  57. 57.
    Rowat, P.F., Elson, R.C.: State-dependent effects of Na channel noise on neuronal burst generation. J. Comput. Neurosci. 16(2), 87–112 (2004) CrossRefGoogle Scholar
  58. 58.
    Shilnikov, A.L., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94(4), 048101 (2005) CrossRefGoogle Scholar
  59. 59.
    Shilnikov, A.L., Kolomiets, M.L.: Methods of the qualitative theory for the Hindmarsh–Rose model: A case study. A tutorial. Int. J. Bifurc. Chaos 18(7), 1–32 (2008) MathSciNetGoogle Scholar
  60. 60.
    Kramer, M.A., Traub, R.D., Kopell, N.J.: New dynamics in cerebellar Purkinje cells: Torus canards. Phys. Rev. Lett. 101(6), 068103 (2008) CrossRefGoogle Scholar
  61. 61.
    Gavrilov, N., Shilnikov, A.L.: Methods of Qualitative Theory of Differential Equations and Related Topics. AMS Transl. Series II (2000). Chapter Example of a blue sky catastrophe, pp. 99–105 Google Scholar
  62. 62.
    Lukyanov, V., Shilnikov, L.P.: On some bifurcations of dynamical systems with homoclinic structures. Sov. Math. Dokl. 19(6), 1314–1318 (1978) Google Scholar
  63. 63.
    Gavrilov, N.K., Shilnikov, L.P.: On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Math. USSR Sb. 17(3), 467–485 (1972) CrossRefGoogle Scholar
  64. 64.
    Cymbalyuk, G.S., Calabrese, R.L.: A model of slow plateau-like oscillations based upon the fast Na+ current in a window mode. Neurocomputing 38, 159–166 (2001) CrossRefGoogle Scholar
  65. 65.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952) Google Scholar
  66. 66.
    Sharkovsky, A.N., Kolyada, S.F., Sivak, A.G., Fedorenko, V.V.: Dynamics of One-Dimensional Maps. Mathematics and its Applications, vol. 407. Kluwer Academic, Dordrecht (1997) MATHGoogle Scholar
  67. 67.
    Mira, C.: Chaotic Dynamics from the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism. World Scientific, Singapore (1987) MATHGoogle Scholar
  68. 68.
    Glendinning, P., Hall, T.: Zeros of the kneading invariant and topological entropy for Lorenz maps. Nonlinearity 9, 999–1014 (1996) MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Li, M.-C., Malkin, M.: Smooth symmetric and Lorenz models for unimodal maps. Int. J. Bifurc. Chaos 13(11), 3353–3371 (2003) MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Medvedev, G.M.: Transition to bursting via deterministic chaos. Phys. Rev. Lett. 97, 048102 (2006) CrossRefGoogle Scholar
  71. 71.
    Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975) MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Shilnikov, L.P., Turaev, D.V.: Blue sky catastrophes. Dokl. Math. 51, 404–407 (1995) Google Scholar
  73. 73.
    Barrio, R., Shilnikov, A.L.: Bursting dynamics of isolated and networked neurons (2011, in preparation) Google Scholar
  74. 74.
    Neiman, A., Shilnikov, A.L.: Spontaneous voltage oscillations and response dynamics of a Hodgkin–Huxley type model of sensory hair cells. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. (2011, submitted) Google Scholar
  75. 75.
    Barrio, R., Shilnikov, A.L.: Parameter-sweeping techniques for temporal dynamics of neuronal systems: Hindmarsh–Rose model. J. Math. Neurosci. (2011, in review) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Neuroscience Institute, Department of Mathematics and StatisticsGeorgia State UniversityAtlantaUSA

Personalised recommendations