Nonlinear Dynamics

, Volume 67, Issue 2, pp 925–939 | Cite as

Modeling and analysis of piezoaeroelastic energy harvesters

Original Paper

Abstract

This work investigates the influence of structural and aerodynamic nonlinearities on the dynamic behavior of a piezoaeroelastic system. The system is composed of a rigid airfoil supported by nonlinear torsional and flexural springs in the pitch and plunge motions, respectively, with a piezoelectric coupling attached to the plunge degree of freedom. The analysis shows that the effect of the electrical load resistance on the flutter speed is negligible in comparison to the effects of the linear spring coefficients. The effects of aerodynamic nonlinearities and nonlinear plunge and pitch spring coefficients on the system’s stability near the bifurcation are determined from the nonlinear normal form. This is useful to characterize the effects of different parameters on the system’s output and ensure that subcritical or “catastrophic” bifurcation does not take place. Numerical solutions of the coupled equations for two different configurations are then performed to determine the effects of varying the load resistance and the nonlinear spring coefficients on the limit-cycle oscillations (LCO) in the pitch and plunge motions, the voltage output and the harvested power.

Keywords

Energy harvesting Piezoaeroelastic Nonlinear analysis Normal form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006) CrossRefGoogle Scholar
  2. 2.
    Sodano, H., Park, G., Inman, D.J.: A Review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004) CrossRefGoogle Scholar
  3. 3.
    Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 167–184 (2007) CrossRefGoogle Scholar
  4. 4.
    Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009) CrossRefGoogle Scholar
  5. 5.
    Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations. Smart Mater. Struct. (2010) (submitted) Google Scholar
  6. 6.
    Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osorio, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20, 545–557 (2007) CrossRefGoogle Scholar
  7. 7.
    Arnold, D.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007) CrossRefGoogle Scholar
  8. 8.
    Mitcheson, P., Miao, P., Start, B., Yeatman, E., Holmes, A., Green, T.: MEMS electrostatic micro-power generator for low frequency operation. Sens. Actuators A, Phys. 115, 523–529 (2004) CrossRefGoogle Scholar
  9. 9.
    Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–21 (2007) CrossRefGoogle Scholar
  10. 10.
    Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008) CrossRefGoogle Scholar
  11. 11.
    De Marqui, C., Erturk, A., Inman, D.J.: Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. J. Intell. Mater. Syst. Struct. 21, 983–993 (2010) CrossRefGoogle Scholar
  12. 12.
    Bryant, M., Garcia, E.: Energy harvesting: a key to wireless sensor nodes. Proc. SPIE 7493 (2009). doi:10.1117/12.845784
  13. 13.
    Bryant, M., Garcia, E.: Development of an aeroelastic vibration power harvester. Proc. SPIE 7288 (2009). doi:10117/12.815785
  14. 14.
    Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010) CrossRefGoogle Scholar
  15. 15.
    Dowell, E.H., Tang, D.: Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J. 40, 1697–1707 (2002) CrossRefGoogle Scholar
  16. 16.
    Gilliat, H.C., Strganac, T.W., Kurdila, A.J.: An investigation of internal resonance in aeroelastic systems. Nonlinear Dyn. 31 (2003) Google Scholar
  17. 17.
    Raghothama, A., Narayanan, S.: Non-linear dynamics of a two-dimensional air foil by incremental harmonic balance method. J. Sound Vib. 226, 493–517 (1999) CrossRefGoogle Scholar
  18. 18.
    Liu, L., Wong, Y.S., Lee, B.H.K.: Application of the centre manifold theory in non-linear aeroelasticity. J. Sound Vib. 234, 641–659 (2000) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Strganac, T.W., Ko, J., Thompson, D.E., Kurdila, A.J., Identification and control of limit-cycle oscillations in aeroelastic systems. In: Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, St. Louis, MO, vol. 3, pp. 99–1463 (1999) Google Scholar
  20. 20.
    Nayfeh, A.H.: Method of Normal Forms. Wiley Interscience, New York (1993) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Engineering Science and MechanicsVirginia TechBlacksburgUSA

Personalised recommendations