Advertisement

Nonlinear Dynamics

, Volume 67, Issue 1, pp 641–658 | Cite as

Periodic solutions of nonlinear delay differential equations using spectral element method

  • Firas A. Khasawneh
  • David A. W. Barton
  • Brian P. Mann
Original Paper

Abstract

We extend the temporal spectral element method further to study the periodic orbits of general autonomous nonlinear delay differential equations (DDEs) with one constant delay. Although we describe the approach for one delay to keep the presentation clear, the extension to multiple delays is straightforward. We also show the underlying similarities between this method and the method of collocation. The spectral element method that we present here can be used to find both the periodic orbit and its stability. This is demonstrated with a variety of different examples, namely, the delayed versions of Mackey–Glass equation, Van der Pol equation, and Duffing equation. For each example, we show the method’s convergence behavior using both p and h refinement and we provide comparisons between equal size meshes that have different distributions.

Keywords

Nonlinear equations Delay differential equations Spectral element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atay, F.: Van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baker, C., Bocharov, G., Ford, J., Lumb, P., Norton, S., Paul, C., Junt, T., Krebs, P., Ludewig, B.: Computational approaches to parameter estimation and model selection in immunology. J. Comput. Appl. Math. 184(1), 50–76 (2005). doi: 10.1016/j.cam.2005.02.003. Special Issue on Mathematics Applied to Immunology MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Barton, D., Krauskopf, B., Wilson, R.: Collocation schemes for periodic solutions of neutral delay differential equations. J. Differ. Equ. Appl. 12(11), 1087–1101 (2006). doi: 10.1080/10236190601045663 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barton, D., Krauskopf, B., Wilson, R.: Homoclinic bifurcations in a neutral delay model of a transmission line oscillator. Nonlinearity 20(4), 809–829 (2007). doi: 10.1088/0951-7715/20/4/001 MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bellen, A., Zennaro, M.: Numerical Solution of Delay Differential Equations. Oxford University Press, Oxford (2003) CrossRefGoogle Scholar
  6. 6.
    Berrut, J., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bobrenkov, O., Khasawneh, F., Butcher, E., Mann, B.: Analysis of milling dynamics for simultaneously engaged cutting teeth. J. Sound Vib. 329(5), 585–606 (2010). doi: 10.1016/j.jsv.2009.09.032 zbMATHCrossRefGoogle Scholar
  8. 8.
    Bocharov, G.A., Rihan, F.A.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125(1-2), 183–199 (2000). doi: 10.1016/S0377-0427(00)00468-4 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001) zbMATHGoogle Scholar
  10. 10.
    Butcher, E., Bobrenkov, O., Bueler, E., Nindujarla, P.: Analysis of milling stability by the Chebyshev collocation method: Algorithm and optimal stable immersion levels. J. Comput. Nonlinear Dyn. 4(3), 031003 (2009). doi: 10.1115/1.3124088 CrossRefGoogle Scholar
  11. 11.
    Doedel, E., Champneys, A., Fairgrieve, T., Kuznetsov, Y., Sandstede, B., Wang, X.: Auto 97: Continuation and bifurcation software for ordinary differential equations. Available online at: http://indy.cs.concordia.ca/auto/ (1998)
  12. 12.
    Doedel, E.J., Keller, H.B., Kernévez, J.P.: Numerical analysis and control of bifurcation problems: II. Bifurcation in infinite dimensions. Int. J. Bifurc. Chaos 1(4), 745–772 (1991). doi: 10.1142/S0218127491000555 CrossRefGoogle Scholar
  13. 13.
    Engelborghs, K., Doedel, E.: Stability of piecewise polynomial collocation for computing periodic solutions of delay differential equations. Numer. Math. 91, 627–648 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Engelborghs, K., Luzyanina, T., ’T Hout, K.J., Roose, D.: Collocation methods for the computation of periodic solutions of delay differential equations. SIAM J. Sci. Comput. 22, 1593–1609 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Eslahchi, M., Masjed-Jamei, M., Babolian, E.: On numerical improvement of Gauss-Lobatto quadrature rules. Appl. Math. Comput. 164(3), 707–717 (2005). doi: 10.1016/j.amc.2004.04.113 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Guglielmi, N., Hairer, E.: Implementing Radau IIA methods for stiff delay differential equations. Computing 67(1), 1–12 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Guglielmi, N., Hairer, E.: Users’ guide for the code RADAR5—version 2.1. Tech. rep., Università dell’Aquila, Italy (2005) Google Scholar
  18. 18.
    Guglielmi, N., Hairer, E.: Computing breaking points in implicit delay differential equations. Adv. Comput. Math. 29(3), 229–247 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Hale, J., Sternberg, N.: Onset of chaos in differential delay equations. J. Comput. Phys. 77(1), 221–239 (1988). doi: 10.1016/0021-9991(88)90164-7 MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hale, J.K., Lunel, S.V.: Introduction to Functional Differential Equations. Springer, New York (1993) zbMATHGoogle Scholar
  21. 21.
    an der Heiden, U.: Unfolding complexity: hereditory dynamical systems—new bifurcation schemes and high dimensional chaos. In: Nonlinear Dynamics and Chaos: Where Do We Go From Here? IoP, Bristol (2003) Google Scholar
  22. 22.
    Higham, N.: The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24(4), 547–556 (2004). doi: 10.1093/imanum/24.4.547 MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Hu, H., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced duffing oscillator with time delay state feedback. Nonlinear Dyn. 15(4), 311–327 (1998). doi: 10.1023/A:1008278526811 zbMATHCrossRefGoogle Scholar
  24. 24.
    Khasawneh, F., Mann, B.: A spectral element approach for the stability of delay systems. Int. J. Numer. Methods Eng. (2011). doi: 10.1002/nme.3122
  25. 25.
    Khasawneh, F., Mann, B., Insperger, T., Stépán, G.: Increased stability of low-speed turning through a distributed force and continuous delay model. J. Comput. Nonlinear Dyn. 4(4), 041003 (2009) CrossRefGoogle Scholar
  26. 26.
    Krauskopf, B.: Bifurcation analysis of lasers with delay. In: Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, pp. 147–183, Wiley, New Jersey (2005) CrossRefGoogle Scholar
  27. 27.
    Lin, G.: Periodic solutions for Van der Pol equation with time delay. Appl. Math. Comput. 187(2), 1187–1198 (2007). doi: 10.1016/j.amc.2006.09.032 MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Luzyanina, T., Engelborghs, K.: Computing Floquet multipliers for functional differential equations. Int. J. Bifurc. Chaos 12(12), 2977–2989 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Mackey, M., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977). doi: 10.1126/science.267326 CrossRefGoogle Scholar
  30. 30.
    Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1-2), 515–530 (2009) CrossRefGoogle Scholar
  31. 31.
    Mann, B.P., Young, K.A.: An empirical approach for delayed oscillator stability and parametric identification. Proc. R. Soc. A 462, 2145–2160 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Parter, S.: On the Legendre–Gauss–Lobatto points and weights. J. Sci. Comput. 14(9), 347–355 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Patera, A.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984) zbMATHCrossRefGoogle Scholar
  34. 34.
    Radde, N.: The impact of time delays on the robustness of biological oscillators and the effect of bifurcations on the inverse problem. EURASIP Journal on Bioinformatics and Systems. Biology 2009, 1–14 (2009). doi: 10.1155/2009/327503 Google Scholar
  35. 35.
    Reddy, J.: An Introduction to the Finite Element Method, 2nd edn. McGraw-Hill, New York (1993) Google Scholar
  36. 36.
    Seydel, R.: Practical Bifurcation and Stability Analysis, 3rd edn. Springer, Berlin (2009). doi: 10.1007/978-1-4419-1740-9 Google Scholar
  37. 37.
    Shahverdiev, E., Bayramov, P., Shore, K.: Cascaded and adaptive chaos synchronization in multiple time-delay laser systems. Chaos Solitons Fractals 42(1), 180–186 (2009). doi: 10.1016/j.chaos.2008.11.004 CrossRefGoogle Scholar
  38. 38.
    Sims, N.D., Mann, B., Huyanan, S.: Analytical prediction of chatter stability for variable pitch and variable helix milling tools. J. Sound Vib. 317, 664–686 (2008) CrossRefGoogle Scholar
  39. 39.
    Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Wiley, New York (1989) zbMATHGoogle Scholar
  40. 40.
    Szalai, R., Stépán, G.: Lobes and lenses in the stability chart of interrupted turning. J. Comput. Nonlinear Dyn. 1, 205–211 (2006) CrossRefGoogle Scholar
  41. 41.
    Vu, T.H., Deeks, A.J.: Use of higher-order shape functions in the scaled boundary finite element method. Int. J. Numer. Methods Eng. 65, 1714–1733 (2006) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Firas A. Khasawneh
    • 1
  • David A. W. Barton
    • 2
  • Brian P. Mann
    • 1
  1. 1.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA
  2. 2.Department of Engineering MathematicsUniversity of BristolBristolUK

Personalised recommendations