Nonlinear Dynamics

, Volume 64, Issue 4, pp 315–330 | Cite as

Approximate analytical solution to oscillations of a conductor in a magnetic field

  • Jee-Hou Ho
  • Ko-Choong WooEmail author
Original Paper


An approximate analytical solution to a system exhibiting oscillations of a conductor in a magnetic field which is controlled by a discrete waveform is sought by means of multiple scales. The system involves the use of a solenoid driven by a RLC circuit, coupled with a solid state relay (SSRL), to generate large electromagnetic forces acting on a conductor, which oscillates within the solenoid. The steady state response of the metal bar, in terms of oscillations is described. This solution is expressed in terms of system and circuit parameters, valid in the weakly nonlinear region, which is identified to be small oscillatory displacement near the center of the solenoid. By analyzing different cases of resonance, period-1 and period-2 like motions are identified and validated through experimental studies. The solution provides a guideline to design an effective control strategy so as to guide the system to a desirable attractor.


Oscillations Approximate analytical method Multiple scales Magnetic field Conductor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mendrela, E.A., Pudlowski, Z.J.: Transients and dynamics in a linear reluctance self-oscillating motor. IEEE Trans. Energy Convers. 7(1), 183–191 (1992) CrossRefGoogle Scholar
  2. 2.
    Nguyen, V.-D., Woo, K.-C.: New electro-vibroimpact system. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 222(C4), 629–642 (2008) CrossRefGoogle Scholar
  3. 3.
    Nguyen, V.-D., Woo, K.-C., Pavlovskaia, E.: Experimental study and mathematical modelling of a new of vibro-impact moling device. Int. J. Non-Linear Mech. 43, 542–550 (2008) zbMATHCrossRefGoogle Scholar
  4. 4.
    Nguyen, V.-D., Woo, K.-C.: Nonlinear dynamic responses of new electro-vibroimpact system. J. Sound Vib. 310, 769–775 (2008) CrossRefGoogle Scholar
  5. 5.
    Ho, J.-H., Nguyen, V.-D., Woo, K.-C.: Nonlinear dynamics of a new electro-vibroimpact system. Nonlinear Dyn. (in press). doi: 10.1007/s11071-010-9783-6
  6. 6.
    Wiercigroch, M., Krivtsov, A.M., Wojewoda, J.: Vibrational energy transfer via modulated impacts for percussive drilling. J. Theor. Appl. Mech. 46(3), 715–726 (2008) Google Scholar
  7. 7.
    Ing, J., Pavlovskaia, E.E., Wiercigroch, M., Banerjee, S.: Experimental study of impact oscillator with one sided elastic constraint. Philos. Trans. R. Soc. Part A 366, 679–704 (2008) zbMATHCrossRefGoogle Scholar
  8. 8.
    Wiercigroch, M., Wojewoda, J., Krivtsov, A.M.: Dynamics of ultrasonic percussive drilling of hard rocks. J. Sound Vib. 280(35), 739–757 (2005) CrossRefGoogle Scholar
  9. 9.
    Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.: Determination of geometrical conditions of assembly and impacts in classified types of mechanical systems with impacts. Eur. J. Mech. A/Solids 24, 277–291 (2005) zbMATHCrossRefGoogle Scholar
  10. 10.
    Stefanski, A., Kapitaniak, T.: Influence of the mass and stiffness ratio on a periodic motion of two impacting oscillators. Chaos Solitons Fractals 17, 1–10 (2003) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Banerjee, S., Ing, J., Pavlovskaia, E., Wiercigroch, M., Reddy, R.: Invisible grazing and dangerous bifurcations in impacting systems. Phys. Rev. E 79, 037201 (2009) CrossRefGoogle Scholar
  12. 12.
    Pavlovskaia, E.E., Wiercigroch, M.: Low dimensional maps for piecewise smooth oscillators. J. Sound Vib. 305, 750–771 (2007) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Crandall, S.H., Karnopp, D.C., Kurtz, E.F., Prodmore-Brown, D.C.: Dynamics of Mechanical and Electromechanical Systems. McGraw-Hill, New York (1968) Google Scholar
  14. 14.
    Ho, J.-H., Woo, K.-C.: Bifurcations in an electro-vibroimpact system with friction. J. Theor. Appl. Mech. 46(3), 511–520 (2008) Google Scholar
  15. 15.
    Warminski, J., Litak, G., Cartmell, M.P., Khanin, R., Wiercigroch, M.: Approximate analytical solutions for primary chatter in the non-linear metal cutting model. J. Sound Vib. 259(4), 917–933 (2003) CrossRefGoogle Scholar
  16. 16.
    Khanin, R., Cartmell, M., Gilbert, A.: A computerised implementation of the multiple scales perturbation method using mathematica. Comput. Struct. 76, 565–575 (2000) CrossRefGoogle Scholar
  17. 17.
    Watt, D., Cartmell, M.P.: An externally loaded parametric oscillator. J. Sound Vib. 170(3), 339–364 (1994) zbMATHCrossRefGoogle Scholar
  18. 18.
    Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973) zbMATHGoogle Scholar
  19. 19.
    Mendrela, E.A.: Comparison of the performance of a linear reluctance oscillating motor operaring under ac supply with one under dc supply. IEEE Trans. Energy Convers. 14(3), 328–332 (1999) CrossRefGoogle Scholar
  20. 20.
    Blakley, J.J.: A linear oscillating ferroresonant device. IEEE Trans. Magn. Mag-19(4), 1574–1579 (1983) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tomczuk, B., Sobol, M.: A field-network model of a linear oscillating motor and its dynamics characteristics. IEEE Trans. Magn. 41(8), 2362–2367 (2005) CrossRefGoogle Scholar
  22. 22.
    Miller, C., Bredemyer, L.: Innovative safety valve selection techniques and data. J. Hazard. Mater. 142(3), 685–688 (2007) CrossRefGoogle Scholar
  23. 23.
    Topcu, E.E., Yuksel, I., Kamis, Z.: Development of electro-pneumatic fast switching valve and investigation of its characteristics. Mechatronics 16, 365–378 (2006) CrossRefGoogle Scholar
  24. 24.
    Ahn, K., Yokota, S.: Intelligent switching control of pneumatic actuator using on/off solenoid valves. Mechatronics 15, 683–702 (2005) CrossRefGoogle Scholar
  25. 25.
    Kallenbacha, E., Kubea, H., Zöppig, V., Feindta, K., Hermann, R., Beyer, F.: New polarized electromagnetic actuators as integrated mechatronic components—design and application. Mechatronics 9, 769–784 (1999) CrossRefGoogle Scholar
  26. 26.
    Gomis-Bellmunt, O., Galceran-Arellano, S., Andreu, A.S., Montesinos-Miracle, D., Campanile, L.F.: Linear electromagnetic actuator modeling for optimization of mechatronic and adaptronic systems. Mechatronics 17(2–3), 153–163 (2006) Google Scholar
  27. 27.
    Rashedin, R., Meydan, T.: Solenoid actuator for loudspeaker application. Sens. Actuators A 129, 220–223 (2006) CrossRefGoogle Scholar
  28. 28.
    Xu, Y., Jones, B.: Simple means of predicting the dynamic response of electromagnetic actuators. Mechatronics 7(7), 589–598 (1997) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of Engineering and ScienceUniversiti Tunku Abdul RahmanKuala LumpurMalaysia
  2. 2.Faculty of EngineeringThe University of Nottingham Malaysia CampusSelangor Darul EhsanMalaysia

Personalised recommendations